
MASTERING LINUX

apcmag.com mastering linux part 31

MASTERING LINUX

apcmag.com mastering linux part 3 2

console basics

Bonus DVD software
Linux commands
cheatsheet

Skill level
Beginner

Requirements
PC with DVD drive
• Internet connection
• printer (optional).

Time to complete
4 hours

n Switching to the console brings up a very basic text-based login prompt. n1n

At this stage of the Mastering Linux Workshops,

you should have a running Linux system and have

experimented a little with the X Windows GUI. But

in order to master Linux, you’ll need to become

familiar with the command line console.

It might sound nostalgic, but back in 1995

Microsoft managed to hide the DOS prompt with

the release of Windows 95. Since then, most PC

users have used grown accustomed to using their

mouse to do everything.

Before this, PCs usually booted to a DOS-based

command line. Occasionally, though, the clever

tinkerer would modify their autoexec.bat file so

that Windows 3.x was launched automatically,

helping users who weren’t familiar with DOS to

get the GUI up without any hassles.

BACK TO THE FUTURE
Today’s Linux is also a command line operating

system, but you can load up a GUI interface if you

wish. In the interests of being more user-friendly,

most Linux distributions (including Fedora Core)

automatically boot to the X Windows GUI if you

installed it — otherwise, you’ll have to work at the

command line console.

But even if your Linux system boots to the X

Windows GUI, you should have a good

understanding of how to do things from the

console. Consider for a moment that something

goes awry with your X Windows configuration file,

and your system can’t initialise the GUI. In this

case, there’s no other option but to log in to a

command line console in order to fix the problem.

And it’s at times like these that you’ll be thankful

you have at least some familiarity with the

command line.

But the console is useful for many other

reasons. It’s far more efficient when it comes to

performing some tasks from a command line, not

to mention that most GUI applications rely on

running many of the command-line functions in

the background.

Understanding the command line console is

essential to working with Linux or Unix. However,

Part 3 Console basics
Having installed Linux using Fedora Core 3, Jarrod Spiga

introduces the command line console and explains how

to put it to work.

this understanding generally doesn’t come

overnight. Right from the outset, you should read

this guide from beginning to end. Don’t worry if

you don’t understand it all straight away. Some of

the concepts explained in this guide will only

become clear once you’ve had more exposure to

Linux and the console.

CONSOLE OTHERS
To be blunt, the Linux console is a boring-looking

text interface that provides a basic interface to

the operating system. Unix has been around since

the 1970s, and in those days there were no fancy

graphics cards. In fact, you were lucky if you had a

monochrome screen capable of displaying more

than 40 columns of text and a keyboard with

as many as 90 keys — assuming that you didn’t

access the console via a terminal device.

Because Unix is a true multi-user operating

system, it’s possible for a number of users to have

access to consoles at the same time. This leads to

the concept of virtual consoles, allowing a single

user to have multiple independent sessions

running on the Unix server at the same time.

This is akin to having multiple maximised

windows displaying on your desktop, in that

each one allows you to do to different things

simultaneously.

By default, seven virtual consoles are active

under Fedora Core 3. The X Windows GUI usually

runs on the seventh and last console, while

consoles one through to six are normally reserved

for text-based command line work. To switch to a

different virtual console, hold down the Ctrl and

Alt keys with one hand, and strike F1 through to

F7 depending on the virtual console you’d like to

view. As you’d expect, F1 corresponds to the first

console, F2 the second and so forth. Ctrl+Alt+F7

should return you to the X Windows GUI if you’re

using it.

LOGGING IN AT A CONSOLE
As the name suggests, a virtual console runs in

exactly the same manner as a regular console

session. Just as you have to log in to your Linux

system as soon as it starts up, you’ll also have to

log in to a virtual console as soon as you switch to

it for the first time.

n1 When switching to a virtual console for the first

time, you’ll be greeted with a simple login screen.

It usually details which distribution of Linux

you’re using, the kernel version and architecture

of the system, followed by the actual login

prompt. Type in your username, then hit Enter.

You’ll be then asked for your password. Type out

this information and hit Enter.

For this exercise, log in as a non-root user, nn1n

It usually details which distribution of Linux

you’re using, the kernel version and architecture

of the system, followed by the actual login

prompt. Type in your username, then hit Enter.

You’ll be then asked for your password. Type out

this information and hit Enter.

MASTERING LINUX

apcmag.com mastering linux part 31

MASTERING LINUX

apcmag.com mastering linux part 3 2

console basics

preferably the user account you set up

towards the end of the Linux installation

process.

n2 If you’ve logged in successfully, your

shell will load, a message of the day may

be displayed and a command prompt will

appear.

GO WELL, GO SHELL
The shell is a Linux program that accepts

instructions from the user and translates

those instructions so the kernel can

understand them. The kernel itself is a

very complicated program designed

to communicate with the electronic

components in your system. The shell is

designed to take your input and convert

it to a set of instructions that the kernel

can understand. In other words, it’s used

as an intermediary in order to make the

command line easier to use.

There are a number of shells available

for use with the Linux kernel. Like most

other distributions of Linux, Fedora Core 3

uses the Bourne-Again Shell (bash) by

default. This shell was originally modelled

on the Bourne Shell (sh) found on many

Unix systems. If you use other Linux and

Unix systems, you may come across other

shells, including the Korn Shell (ksh).

WORKING THE SHELL
Entering commands at the shell can be

daunting for those new to Linux, but by

remembering a few general conventions

most users can get the hang of things a little

more easily.

The structure of all Linux commands is

made up from three basic elements: the

actual command; the option or flag; and

the argument. The actual command is the

compulsory element and instructs the

shell about what type of specific task needs

to be done.

The option or flag is usually an optional

component that modifies the behaviour of

the actual command, and is generally

preceded with one or two hyphens (-).The

meaning of each option and flag is usually

unique to each command. However, one

exception is the help flag, which is always -?

or --help.

Arguments are other components that

provide additional data to a command in

order to execute properly, or to an option to

modify the commands behaviour in a

proper manner.

The documentation for commands

often uses the following simple convention

when detailing how to use a command:

command -option1 argument1 [-op-
tion2 argument2]

The actual command is always written

in regular typeface, while options and

arguments are always italicised. Options or

arguments that may or may not be included

are normally surrounded by brackets.

Basically, the above line states that at least

one option and one argument must be

used after the command in question, while

further options and arguments may or may

not follow.

THE LINUX FILE SYSTEM
Working at the command line requires some

knowledge of the Linux file system because

there aren’t any fancy Windows Explorer-

style directory trees or search functions to

help you find stuff. However, as mentioned

in part two of the Mastering Linux series, the

Linux file system is significantly different to

the file systems used under Windows.

For starters, Windows has a root

directory for every drive on your system,

with a directory tree under that. More

recently, Microsoft adopted the idea that

My Computer was the root element and

that all drives should branch off from this.

But for the most part, each drive is still seen

as its own file system.

Under Linux, every directory on the

system is connected to the root (/) directory.

Other drives are mounted to a location

somewhere underneath the root file

system. Even other input and output

devices in your PC are accessible from under

the root file system. Much like Windows, the

Linux file system also consists of files and

directories (directories are often called

folders from Windows 95 onward), and

directories are simply a storage location for

other files.

GO HOME
Another aspect of the Linux file system you

should be aware of is the concept of home

directories. Home directories are similar to

the My Documents folder under Windows;

they are a place reserved for the files and

directories that belong to each user.

A home directory is usually created for

each user on your Linux installation, and

stored under the /home/ directory. For

example, a user named craig will have a

home directory set up in /home/craig.

Similarly, /home/patrick will be the home

directory set up for a user named patrick.

However, there are some exceptions to

this rule. Accounts that are generally set up

for security restrictions don’t usually have

home directories. One example is the

account normally set up for use by the

Apache Web server: apache. Also, the root

user has a different location for their home

directory — it’s usually located at /root/.

This location is called the root users home

directory and should not be confused with

the root directory of the file system.

The home directory allows Linux to

keep the files and settings that belong to

each user separate. It also provides a

security mechanism that can prevent others

from seeing your files. Home directories

help prevent a system from becoming

cluttered. If every user stores their own files

in their own repository, finding them is a

much simpler task.

FILE SYSTEM NAVIGATION
Once you’ve logged in to the command line

console, your commands will be executed

at a location in the file system called the

working directory. As soon as you log in,

your home directory will be set as your

current working directory by default. The

command prompt may give you a little hint

as to where you are in the file system, but to

find out where exactly you are (to Print your

Working Directory), use the pwd command:

pwd

n3 This command displays the full path to

your current working directory (/home/

jspiga as shown in figure three). With that

in mind, you now know that any command

executed will run from this directory. To

demonstrate this, run the ls command.

ls

n After you’ve logged on to the console, a short message of the day will appear. In this case, the time that
jspiga last logged on. 2

MASTERING LINUX

apcmag.com mastering linux part 33

MASTERING LINUX

apcmag.com mastering linux part 3 4

console basics

By itself, ls will generate a colour-coded

listing of all of the files and directories in

the current working directory (similar to the

dir command under DOS). As shown in the

screenshot, the home directory contains

a number of executable files (coloured

green), three directories (blue), a couple of

compressed archives (red) and a symbolic

link (a more technical name for a shortcut

under Windows, and coloured light blue).

It’s possible that your home directory

may be empty, particularly if you haven’t

been using Linux that much since you

installed it. You can obtain a listing of the

files and folders located in another directory

by passing the location of that directory to

the ls command as an argument. For

example, to obtain a listing of all the files in

the root (/) directory, enter the command:

ls /

n4 In this case, the file system root only

contains directories.

In order to change your working

directory to a different location, use the cd

command. In most cases, you’ll pass an

argument to this command for the path that

you want to change your working directory

to. For example, to change the working

directory to /usr, enter the following

command:

cd /usr

pwd

ls

n5 The output of the pwd command should

show that your working directory is now

/usr. The ls command should also display

the contents of the /usr directory.

Note that a forward slash was used

before usr. This indicates that you want to

change to the usr directory that is below the

root directory. If this forward slash was

omitted, the shell would expect to change

the working directory to the usr directory

relative to your current location. For

example:

cd etc

pwd

cd /etc

pwd

After the first directory change, you’ve

switched to the etc directory under the

current working directory (/usr). By adding

the forward slash before etc, we changed

to the etc directory that is under the file

system root. If you don’t pass an argument

on to the cd command, you’ll be taken back

to your home directory.

FILE AND DIRECTORY MANAGEMENT
Once back in your home directory, you can

start meddling with a few files. But first you

need to create a new directory to run some

practical experiments. Use the following

command:

mkdir test1

n6 By using a relative path, you should have

created a directory in the current working

directory. Alternatively, you could use a

full path to create a directory anywhere in

the file system. To demonstrate this, create

a second directory under the first test

directory as follows:

mkdir /home/<username>/test1/
test2

ls test1

where <username> refers to the username

you are currently logged in as. The ls

command should show the contents of

the first test directory you created, and

should contain nothing but the second test

directory.

The touch command is generally used

to update the timestamp on a file, but can

also be used to create empty files. It

expects at least one argument — the name

of the file you want to update the

timestamp (or create, if the file doesn’t

exist):

touch example.txt

ls

Like the example above, the argument that

is passed into the touch command may

be a full or relative path to the file. Using

the full path is one way that you can create

files anywhere in the file system regardless

of what your current working directory is.

Now that you have an example file to

the first test directory you created, and

should contain nothing but the second test

directory.

to update the timestamp on a file, but can

also be used to create empty files. It

expects at least one argument — the name

of the file you want to update the

timestamp (or create, if the file doesn’t

exist):

directory as follows:

where

you are currently logged in as. The ls

n The pwd and ls commands in action, showing the path to, and the contents of the home directory. 3

n The ls command can be used to view the location of any directory (such as the file system root) by passing
the location as an argument to the command.4

is passed into the touch command may

be a full or relative path to the file. Using

the full path is one way that you can create

files anywhere in the file system regardless

of what your current working directory is. n The cd command can be used to change the working directory to another location on the file system (such
as /usr). 5

MASTERING LINUX

apcmag.com mastering linux part 33

MASTERING LINUX

apcmag.com mastering linux part 3 4

console basics

play around with, try making a copy

of it by using the cp command as shown

below:

cp example.txt firstcopy.txt

ls

The directory listing should now indicate

the presence of another file called

secondfile.txt. But what happens if you

wanted the new copy of the file to have the

same name as the original, but be placed

in a different directory? In this case, you’d

replace the second argument to the cp

command with a directory path instead of

a file name. For example:

cp example.txt test1

ls

ls test1

n7 Because there is already a directory

named test1 in the current working

directory, the shell assumes that you want

the copy of the example.txt file placed in

this directory. The Linux file system won’t

allow you to have the same name for a file

and a directory within the same directory.

As with the previous examples, you could

use a full path to copy the file anywhere in

the file system.

It’s just as simple to move a file from one

location to another, but using the mv

command. When mv is executed, it’s

actually copying the original file to the

destination, then deleting the original. The

mv command can also be used to rename

files — if the second argument passed to

the command is not a directory, the file will

be renamed in the process of being moved.

CLEANING UP
It’s all well and good to have these files

and directories floating about in the home

directory, but they don’t do anything so get

rid of them.

You can only remove a directory once it

has been emptied, so the first thing to do is

delete all the files you’ve created by using

the rm (remove) command:

cd

rm example.txt firstcopy.txt
test1/test2/example.txt

In this case, three arguments are being

passed to the rm command, each argument

containing the relative path to the files that

you wish to remove. The last thing to do

is remove the directories using the rmdir

command:

rmdir test1/test2

rmdir test1

Technically, most of the files and directories

could have been removed in one fell swoop

by using a couple of the options available to

the rm command, but these switches make

it very easy to delete large sections of the

file system — something a new Linux user

wouldn’t want to do. If you’d like to read up

on what options and arguments can be given

to any command, refer to the man (manual)

pages for each command by entering:

man <command>

While inside the main page viewer, use the

arrow keys to scroll through the document.

Hitting q will quit from the viewer.

DOTS AND DOUBLE DOTS
So far, you’ve only used the ls command

to generate a basic listing of the files in a

directory. Much like with the rm command,

ls has a number of options that can be used

to alter the behaviour of the command.

In this case, though, the options aren’t as

damaging.

Two of the most commonly used options

for the ls command are -l, which produces

a long and detailed listing of all of the files,

and -a, which lists all of the files in the

directory, whether they are hidden or not

(without the -a option, only the visible files

will be listed). You can test this out on your

home directory (even if it’s empty):

ls -la

If your home directory is empty, you’ll

probably see a couple of entries appearing,

starting with a number of files beginning

with a period (.). These are hidden files,

most of which will contain user settings and

preferences for different applications on

your Linux system.

At least another two directories should

also be in the list: one with a single period (.)

as its name; and another with a double

period (..). Technically, these aren’t

subdirectories under your current working

directory. The single period directory is

actually a reference for the current directory

you’re in, while the double period entry

corresponds to the directory that is the

parent of the current working directory.

To demonstrate this, change the

working directory to the /home

n Use the mkdir command to create directories, which will help you organise your files. 6

n A demonstration on how the cp command works. If the second supplied argument exists and is a
directory, the source file will be copied to that directory.7

MASTERING LINUX

apcmag.com mastering linux part 35

MASTERING LINUX

apcmag.com mastering linux part 3 6

console basics

directory using the method described

above and then obtain a few different

directory listings:

cd /home

ls

ls /home

ls .

ls /

ls ..

n8 The first three ls commands should have

generated the same output: the contents

of the /home directory. The latter two

commands would have shown you the

contents of the root (/) directory, the parent

directory of /home.

You can use the . or .. directories in

your command line arguments. For

example, the following would copy the

example.txt file to the parent directory:

cp example.txt ../

or to change the working directory to the

parent directory, you could use:

cd ..

For an example of a more complicated

use, if you wanted to copy the example.txt

file from your home directory to whatever

directory you’re working in at that time, you

could use:

cp /home/<username>/example.txt .

SHELL SHORTCUTS
Now that you know some of the really basic

command line functions, there’s no reason

why you can’t take advantage of some of

the shortcuts available at the bash console.

The most frequently used shortcut is the

auto-complete function. By hitting the Tab

key, the bash shell can attempt to complete

a path, command name or file name that

you’re currently in the process of typing. For

example, perform the following:

cd /

cd ho[Tab]

Once you hit the Tab key, the shell should

automatically complete the rest of the

directory name, in this case home. The auto-

complete function will only work when

you’ve entered enough characters for the

shell to be sure which directory you want.

For example, entering the following would

not generate an auto-complete response:

cd /b[Tab]

This is because there’s more than one

directory under the file system root that

begins with the letter b (bin and boot).

However, enter in the second letter of

the desired directory, hit Tab, and auto-

complete will work.

If you hit Tab and find that your

command element has not been

automatically completed, try hitting Tab a

second time. This should return a list of all of

the entries that match the criteria you’ve

entered so far. For example:

cd /b[Tab][Tab]

will produce the output shown in image six.

The bash shell also keeps a record of the

most recent commands you’ve executed,

allowing you to quickly bring them up again

for re-execution. To scroll through the log of

recent commands, use the up and down

arrow keys. On a similar note, it is possible to

view text that has scrolled off of the screen

from the console. To do so, hold Shift+PgUp

or Shift+PgDn to review your console

history.

One last shortcut worth remembering is

that the tilde character (~) refers to your

home directory. For example, the following

command will list the contents of your

home directory, regardless of the current

working directory:

ls ~

LINKS
If you recall, in figure three (the directory

listing of a home directory) there are a

number of light blue entries. These aren’t

actually files, they’re links.

People with a moderate amount of

programming experience can think of links

as pointers, while Windows users may prefer

to think of them as shortcuts. In either case,

a link points to another link, file or directory.

They are often used in order to conserve

disk space (why have two copies of the

same file when you can have a link pointing

to the original), or to make things more

convenient.

If you perform a task on a symbolic link,

the task will be applied on the original file in

most cases. For example, if you enter in a

command to edit the symbolic link, you’ll

actually be editing the file that the symbolic

link points to. Conversely, if you delete a

symbolic link by using the rm command,

you’ll be removing the link only, not

deleting the actual file.

Symbolic links can be created by using

the ln (link) command. For example,

execute the following commands:

cd

mkdir test_dir

touch test_dir/file.txt

ln -s test_dir link

ls

ls test_dir

ls link

n9 The first command simply switched

to the home directory. From here, a test

directory was created, as well as a text

file in this directory. Then a symbolic

execute the following commands:

n
to the home directory. From here, a test

directory was created, as well as a text n You don’t always have to know the full path to a location on your system. Relative paths (using . and ..) can
also be passed to most commands.8

MASTERING LINUX

apcmag.com mastering linux part 35

MASTERING LINUX

apcmag.com mastering linux part 3 6

console basics

link (note the -s option, which is used to

create the symbolic link) was made. The first

argument to this command is the location of the

file or directory that you’re linking to. The second

argument is the name of the link.

The last three commands show you how the

file system looks as a result of the changes. The

first command should show test_dir in dark

blue (indicating that it’s a directory) and link in

light blue (indicating that it’s a symbolic link).

The second last line shows the contents to the

test directory you created — the file.txt file

should be the only thing here.

The last line shows the contents of link, which

points to the test directory. As you would expect,

the contents of link should be the same as your

test directory because they are actually the

same location.

I PWNED J00R PERMS!
For any operating system to be considered

secure, provisions need to be made at many

levels throughout the OS, including the file

system. Linux has simple yet effective security

settings that are applied on every object

in the file system in order to restrict access

appropriately. Every object in the file system has

two unique attributes:

 It must belong to a user on the Linux system.

The permissions system keeps track of which

users or groups own every file or directory.

 It has a defined set of access restrictions for

the user who owns the file, the user group that

has ownership of the file, and everyone else.

These restrictions are generally known as the

permissions of the object.

When you create a file or directory, default

ownership and permissions settings are applied to

it. These attributes can be changed if you have the

right level of access. But before doing this, you

should become familiar with checking the

attributes of a file.

Earlier in this guide, you would have used the -l

and -a options to the ls command to generate a

list of all the files in your home directory. These

options can also be used to generate a listing of all

files and directories, showing the ownership and

permissions details for each entry:

ls -la /

n10 This listing shows a great deal of information

about all of the files and directories in the file

system root. The column on the far left shows the

permissions of the object.

Moving across, the second column shows the

number of hard links to that object (a hard link is

similar to a symbolic link, see www.apcmag.com/
info/hard_link for a more thorough description).

This is followed by the user who owns the object,

the group that owns the object, the size of the

object (in bytes), the object’s creation date and

the name of the object.

ABOUT USER ACCOUNTS AND GROUPS
You’re probably already familiar with the idea of

user accounts, after all, you’re using one from the

moment you log in to your Linux PC. However,

Linux also uses a number of groups; collections

of user accounts designed to ease administration

while maintaining security. A user account must

belong to at least one group, and may belong

to several.

Every object in the Linux file system is owned

by a group in the same way that they’re owned by

a single user. From the above example, you can

see that the root user and the root group holds

ownership of all of the objects in the file system

root (this is the case by default). However, it’s a

different story in your home directory:

ls -la ~

What the
numbers mean

7 rwx read, write and execute access

6 rw- read and write access

5 r-x read and execute access

4 r-- read-only access

3 -wx write and execute access*

2 -w- write-only access*

1 --x execute-only access

0 --- no access

* To many users, this doesn’t make much
sense. Normally, you need to be able to
read a file in order to make modifications
to it or to execute it. However, this
permission is often granted to directories
where you want people to be able to
write files, but not give them the access
to change or execute them.

n Symbolic links can be used like short cuts — they can be used to point to another location on the
file system for quick or convenient access.9

n A long (-l) directory listing of all (-a) files in the root directory. Notice the file/directory permissions,
owners and timestamp. 10

MASTERING LINUX

apcmag.com mastering linux part 37

MASTERING LINUX

apcmag.com mastering linux part 3 8

console basics

n As you can see, the majority

of objects in this directory are owned by

you and your username also appears as the

group owner. Don’t be confused — this is a

group account you are looking at, which is

different to your user account. When your

user account was created, a group with the

same name as your user account was also

created and your user account was assigned

to this group.

PERMISSIONS
In the column on the left of this directory

listing, you’ll see a grouping of characters

that represent the permissions for the

object. The first character always represents

the file type. The letter d is used to

represent directories, while l is used to

represent symbolic links. If a hyphen (-)

appears as the first character, then that

object is a regular file. Back in the days of

monochrome screens, this was the easiest

way of knowing what type of file you were

looking at.

The remaining nine characters can be

broken into three sections containing three

characters each. The first bunch of letters

relates to the permissions that are applied

for the owner user. The second grouping

dictates the permissions for the owner

group, while the last three show the

permissions for everyone else.

The first column of each of these three

groupings is used to determine read/

directory listing access — the presence of

an r in this column indicates that the user/

group/everyone has read access to the file,

or has the ability to obtain a listing of the

contents of the directory. The second

column dictates write access — a w in this

column allows a user/group/everyone to

create or remove files or directories, or

modify existing files. The third column

indicates execution rights, if an x appears in

this column, a user/group/everyone can

execute the contents of that file, or change

the working directory to that directory.

To illustrate this, run the following

command:

ls -l /home

Observe the permissions on the entry

that represents your home directory (you

should see drwxr-xr-x). This shows that

the object is indeed a directory, that you

have read, write and execute permissions,

and that other users in your group have only

read and execute permissions (they don’t

have the ability to make modifications to

your data). Similarly, everyone who is not

included in your group also have the ability

to read and execute only.

MODIFYING PERMISSIONS
There are two ways that you can change

permissions on a file system object: the

symbolic method; or the numeric method.

The chmod (change mode) command

supports both methods. Which you use is

generally a matter of preference.

THE NUMERIC METHOD
It was mentioned earlier that the

permissions shown in a directory listing

are actually made up of three sections

containing three letters each. Each of these

three letters shows the read/write/execute

access to that file for the respective user/

group/everyone.

These permissions are represented as

letters to assist with readability, it’s much

easier to see the letter r and know that

read-access is granted. However, you could

just as easily substitute the letters for

binary digits, where 1 indicates that the

permission field is active and 0 indicates

that it’s not. Using your home directory as

an example, its permissions would then

become 111101101.

If you then express each grouping of

three binary digits as a decimal number,

you would get a three digit number that

represents the permissions for a file — 755

would then represent the permissions of

your home directory.

In order to quickly change the

permission on a file system object, pass this

number to the chmod command as the first

argument and specify the object you want

to change the permission of as the second

argument. For example, to stop your

home directory from being accessible

permissions on a file system object: the

symbolic method; or the numeric method.

The

supports both methods. Which you use is

generally a matter of preference.

THE NUMERIC METHOD

permissions shown in a directory listing

are actually made up of three sections

containing three letters each. Each of these

three letters shows the read/write/execute

access to that file for the respective user/

group/everyone.

easier to see the letter r and know that

read-access is granted. However, you could

just as easily substitute the letters for

binary digits, where 1 indicates that the

an example, its permissions would then

become 111101101.

three binary digits as a decimal number,

you would get a three digit number that

represents the permissions for a file —

would then represent the permissions of

your home directory.

permission on a file system object, pass this

number to the

argument and specify the object you want

to change the permission of as the second

11&12

n Compare the long listing of the root directory to a long listing of your home directory. You’re the owner of
everything within your home by default.11

n The /home directory should contain a sub-directory for every user account on the system with the exception
of the root user.12

MASTERING LINUX

apcmag.com mastering linux part 37

MASTERING LINUX

apcmag.com mastering linux part 3 8

console basics

to users who are not in your group, you

could use the following:

chmod 750 ~

THE SYMBOLIC METHOD
a similar process is followed to the

symbolic method is used to change the

permissions on a file system object. The

chmod command is also used, and the

name of the object you’re modifying is

still passed as the second argument to the

command. However, the structure of the

first argument is different.

The symbolic code you need to

generate is made up of three parts:

 The scope: using one or more of the

letters u, g or o for the owning user,

owning group or everyone else (or other)

respectively. The scope defines exactly

which elements in the permissions are

changed

 The modifier: either a +, - or = sign

depending on whether you want to add,

remove or explicitly define the permissions

respectively.

 The access code: using one or a

combination of the letters r, w or x for read,

write or execute access respectively. The

access code determines which permissions

are changed.

Repeating the above example, to

remove everyone who is not a member of

your group from accessing your home

directory, you could use:

chmod o-rwx ~

CHANGING OWNERS
Before moving any further, we should

restore the permissions of your home

directory to how they were. Execute one of

the following commands:

chmod 755 ~

or

chmod o+rx ~

There may be times where you want to

change the owning user or the owning

group of a file. For example, I may want

to change the permissions of the file I’m

writing this guide in to allow the APC

production team to modify it so that they

can correct any spelling, punctuation and

grammatical errors.

Two commands can be used in order to

achieve this - chown (change owner) and

chgrp (change group). The usage of this

command is very similar to chmod, and

there are no prizes for guessing this. The

user or group that you want to be the new

owner of the object is used as the first

argument while the object name is passed

on to the command as the second one.

Using the above example, I could use

the following commands to hand over my

document to the production team:

chown pduggan ~/mastering_linux/
03_console_basics.doc

chgrp production ~/mastering_
linux/03_console_basics.doc

n13 As you can now see from the output

of the directory listing, pduggan (the

production editor) is now the owning user

of the file and the production team are the

owning group.

Another way I could have achieved the

same result is by using one of the short cuts

with the chown command. This also allows

you to change the owning group of an

object with a slight modification to the first

argument. Instead of just specifying the

user you want as the new owner, you can

specify both the new owning user and

group separated by a colon, as

demonstrated below:

chown pduggan:production ~/
mastering_linux/03_console_
basics.doc

SWITCHING USERS
Before proceeding, observe the permissions

on the file now:

ls -l ~

Considering that I am neither pduggan nor

a member of the production group, I can

now only read my document. Obviously,

I can’t allow this to remain the case,

otherwise I won’t be able to continue

to save my document. Perhaps I should

have changed the permissions on my

file before changing the ownership. This

lack of foresight has caused a problem

where I have insufficient rights to save my

document. Since I no longer have write

access to the file, I also don’t have the ability

to modify its permissions.

However, since I know the details of the

root user account on my system, I can use

these credentials to change the permissions

of the file. (Remember last month’s guide?

The root user has the ability to do

everything.) To easily switch to the root user

account, I can use the su (switch user)

command. If no arguments are specified,

the command assumes that you want to

switch to the root user account. However, if

you want to switch to a different user

account, simply supply the user name

n To change the ownership of a file that you don’t have access to, you’ll need to switch to the root account
using the su command. 14

n In order to manage your files and directories in a secure fashion, you’ll need to change the user and group
ownership of file system objects from time to time.13

MASTERING LINUX

apcmag.com mastering linux part 39

as an argument to the command.

n14 Once you’re successfully authenticated

as the root user, you then have access to

modify the files properties again. In my

case, I’d simply execute:

chown jspiga ~/mastering_linux/
03_console_basics.doc

Now, I am the owner of the file again, but

the production team is still set as the group.

As a result, I can save my document and

they can still make the necessary changes

before this gets rendered as a PDF.

EXIT, STAGE LEFT
Even after executing the command to

change the ownership of the file back to

my user account, I’m still logged in to the

console as the root user. To relinquish these

authentication credentials for the time

being and get back to my user account, use

the exit command.

exit

n15 The same command can be used to

log out of the system. Once you do so, the

screen will be cleared and the login prompt

will display - ready for the next user to log in

to the console.

Next month . . .

Next month’s Mastering Linux guide
will focus on getting familiar with the X
Windows desktop. It will also reveal a
couple of secrets that will help you use
the Linux GUI more efficiently.

n To exit the su shell or to log out from the console, use the exit command.15

