
MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 131

MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 13 2

file systems and interactive scripts

In this series . . .

Part 12 — November ‘05

System administration

Part 13 — December ‘05
File systems and
interactive scripts

Part 14 — January ‘06

Remote X-Windows

. . . and more

Mastering Linux, part 13

The ability to manage the file systems on your

Linux PC is an important administration task. For

instance, if you add a new hard disk to your system,

it won’t be accessible until you identify, partition,

format and mount it within the current file system.

Alternatively, if you need to remove a hard disk,

it needs to be gracefully removed before pulling

the plug.

FILE SYSTEM CREATION
As mentioned above, the first step in creating a

new file system is to identify the device name for

your new hard disk (or other storage device). If

you cast your mind back to the first instalment

of this series (APC December 2004, page 98) , it

mentioned the convention used to identify hard

disks in your system. The following table shows

a summary of this:

IDE and
SATA

hda,
hdb

The primary master and primary
slave devices respectively.

hdc,
hdd

The secondary master and
secondary slave devices
respectively.

hde,
hdf, ...

Additional drives connected to
other controllers in your system.

SCSI sda,
sdb, ...

Devices are assigned in order
of controller id, followed by
SCSI id.

The parted command can be used to identify storage

devices. For example:

parted /dev/hdb print

displays information relating to the device that has

been assigned as hda. If you have a brand new hard

disk, you may receive an Unrecognized Disk Label

error. This error means the disk simply needs to be

prepared for use with the following command:

 parted /dev/hdb mklabel msdos

After you’ve identified the device, it needs to be

partitioned. The fdisk utility is one of the simplest

tools that you can use for this purpose. To launch it,

simply pass the device as an argument to the

command. For example:

fdisk /dev/hdb

Once fdisk is running, you can use single-keystroke

commands to partition the disk. In general, there are

In this month’s instalment of the Mastering Linux series,

Jarrod Spiga discusses file system management, and examines

interactive shell scripting.

Skill level

Advanced

Requirements
An installation of Linux
(Fedora Core 4 and Red Hat
Enterprise Linux ES3 were
used in the writing of this
article).

Time to complete

3 hours

Parts 10 and 11 of the Mastering Linux series

(“Mastering the shell”, APC September, page

116; “Scripting and customisation”, APC October,

page 116) explained how to create shell scripts

to help you perform tasks more efficiently at

the command line. However, shell scripts can

also produce X-Windows dialogue boxes,

providing additional functionality to your scripts

under a GUI.

The xmessage command is used to bring up

the dialogue box and requires that the message

and options are passed as options to the command,

as follows:

xmessage -buttons "button1,button2,etc"
"message"

where button1,button2 and so on are the labels

for the buttons in the dialogue box and message

is the message that appears in the dialogue box

above the buttons.
2 A demonstration dialogue box is shown

below. Depending of which button is clicked,

a value is passed back to the script as the "$?"

variable. If the first button is clicked, this value

is 101; if the second button is clicked, 102 is

the returned value; and so forth. Processing

INTERACTIVE SHELL SCRIPTING

2

MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 131

MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 13 2

file systems and interactive scripts

a few rules that you need to remember when

creating partitions in fdisk:

• Hitting the m key will bring up help.

• A maximum of four primary partitions,

or three primary and one extended, can

be created on any device. Extended

partitions can’t be formatted, but can

contain logical partitions. Partitions are

created by pressing n.

• Partition Hex code 83 is for an ext2/ext3

Linux file system. Partition Hex code 82 is for

a Linux Swap file system. Partition formats are

changed by pressing t.

• Linux Swap file systems can’t be mounted.

The space assigned to these partitions is

reserved for virtual memory.

• Changes won’t be committed to the disk’s

partition table until you write your changes

(by hitting the w key).

Each primary or logical partition that you

create will be assigned a number to

differentiate it from other partitions on

the disk. Be sure to note down the numbers

assigned to each partition.

FORMATTING
After creating your partitions, you’ll need

to format them before they become useful.

If you’re reformatting an existing partition,

check that it’s not mounted before

formatting. Swap partitions are created

with the mkswap command:

mkswap /dev/hdb1

while partitions that store data are created

using the mkfs series of commands. The actual

command you’ll use depends on the format you

want for the partition. Most of the time, you’ll

want to create ext3 partitions for Linux (using

the mkfs.ext3 command):

mkfs.ext3 /dev/hdb1

Other file system formats are supported under

Linux, including FAT16, ReiserFS, NFS, iso9660

and others. While creating file systems of these

types is outside the scope of this Workshop,

the process is similar to that mentioned above.

Just remember to ensure that you match the

file system type when creating and formatting

the partition.

PREPARE FOR MOUNTING
Technically, mounting a file system is a

two-step process. But if you’re permanently

mounting a new file system, a third step is

often inserted between the others.

Step one is to create a mount point — an empty

directory where your new file system will attach

to your current Linux file system. You may use

an existing directory to mount the new file

system on, but the contents of this directory

will no longer be accessible once you’ve

mounted the file system.

The optional second step is to edit the /etc/fstab

file (this is an abbreviation for file system table).

The contents of this file instruct the system how

to mount a number of predefined file systems.

It’s advantageous to add the details of the new

file system to this file as it simplifies the process

of physically mounting and unmounting the

new file system on the current one.
1 The image (above, left) shows the

typical contents of the /etc/fstab file, while

the following table details what each

column in the table means and gives an

example of the usage for mounting a hard

disk partition:

a few rules that you need to remember when the disk. Be sure to note down the numbers

Linux, including FAT16, ReiserFS, NFS, iso9660

and others. While creating file systems of these

types is outside the scope of this Workshop,

the process is similar to that mentioned above.

Just remember to ensure that you match the

file system type when creating and formatting

the partition.

PREPARE FOR MOUNTING
Technically, mounting a file system is a

two-step process. But if you’re permanently

mounting a new file system, a third step is

which button has been pressed is then

a simple matter of checking the result

— of the “$?” variable from within

the script.

The basic print and backup script shown

in part 10 of the Mastering Linux series

could easily be extended to incorporate

a confirmation screen as follows:

#!/bin/bash

ARCHIVE= "$2"

xmessage -buttons "Yes,No" "Are you sure
that you want to print and archive
$ORIGINAL?"

if [$? -eq 101]; then

lpr "$ORIGINAL"

cp "$ORIGINAL” ~/backup/mastering_linux_
”$ARCHIVE"

fi

Command substitution can also be used

as the button argument in the xmessage

command, but remember that all of your

buttons need to be comma-delimited.

Many Linux commands can automatically

format the output to work in this manner.

For instance, the ls -m command and

switch will provide a comma-separated

directory listing, as can be seen in the

following example:

#!/bin/bash

X=100

for FILE in *.txt; do

if [$? = $INDEX]; then

lpr "$FILE"

cp "$FILE" ~/backup/"$FILE".bak

fi

done

Even if the command can’t format things

the way you want, you can use the stream

editor (sed) to do the work on the output

of your command that gathers the info for

your buttons.

CALLING SCRIPTS FROM NAUTILUS
Part 10 of this series also showed that all

executable scripts saved to the bin directory

under your home were executed, regardless

of your current working directory (thanks

to the $PATH environment variable).

Another special directory may exist

under your home directory for the creation

of Nautilus (the GNOME file manager)

scripts. This directory is located at

~/.gnome2/nautilus-scripts. Note the

period before gnome2 — this indicates

that the directory is hidden from general

view in the file system. If this directory

doesn’t exist on your system, you may

1

MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 133

MASTERING LINUX

apcmag.com  december 2005  mastering linux  part 13 4

file systems and interactive scriptsfile systems and interactive scripts

Device /dev/
hdb1

The device name
given to the file
system that you’re
mounting.

Mount
Point

/mnt/db The location of the
directory that is
being used as the
mount point.

File
system

ext3 The format of the
file system being
mounted.

Mount
options

defaults The options used to
mount the partition
(see other table).

dump
options

0 Specifies whether a
file system should be
scanned for backup
by the dump
command. 0 = don’t
scan, 1 = scan.

fsck
options

1 Specifies whether a
file system should be
checked when the fsck
(file system check)
command is run, and
what order file
systems are scanned
in. 0 = don’t scan.

A number of different mount options can be

specified in the /etc/fstab file (most of these

options can also be used with the following

mount commands):

auto|noauto Specifies that the file system
will be automatically
mounted at system boot (or
not). auto is the default.

user|nouser Specifies whether regular
users can mount or unmount
the file system, or whether
this privilege is limited to
the root user. nouser is the
default option.

exec|noexec Specifies whether
executable files can be run
on the file system (or not).
exec is the default option.

ro|rw Specifies whether the file
system is read-only or
readable and writable. rw is
the default option, but
you’ll want to mount optical
devices as read-only (ro).

sync|async Specifies whether data is
committed to the file system
instantly or cached for later
action. Default is async, but
it’s probably better to use
synchronous operation for
removable media.

defaults Specifies that the file system
should be mounted using all
default values.

MOUNTING
The final task is to attach the file system to

the mount point, using the mount command.

If you’ve added an entry for your new file

system in /etc/fstab, mounting the file system

is as simple as passing the mount point as

an argument to the mount command:

mount /mnt/db

If you skipped the middle step, the mount

command that you need to issue is more

complex, since you have to manually pass

the mounting options to the command.

The general format of the command is:

mount -t fstype [-o options] device mount_
point

where fstype is the file system format, options

are the mount options you wish to use (listed

in the table above), device is the device name

for the file system and mount_point is your

mount point. Thus, the following command

would mount your database file system in the

same manner as shown above, assuming that

step two was skipped:

mount -t ext3 /dev/hdb1 /mnt/db

UNMOUNTING
The process of unmounting a file system is

a no-brainer. Entering:

umount /mnt/db

simply passes the name of either the mount

point or the device name to the umount

command.

Next month. . .

The next instalment of the Mastering
Linux series will show you how to
configure a Linux PC so that it can run
in X-Windows from a remote machine
— be it Windows or another Linux PC.

simply create it to allow Nautilus scripts

to be launched.
3 A Nautilus script is just like any other

shell script, except that it’s also executable

via a context menu from within Nautilus.

The context menu can be brought up by

right-clicking within Nautilus and selecting

the Scripts branch.

If you have one or more files selected

when you bring up the context menu

and execute a Nautilus script, the files are

passed to the script as arguments; $1 for

the first file, $2 for the second and so on.

The $@ variable can also be used to access

the entire list of arguments.

Extending the print and archive

script above so that it operates as a

Nautilus script can be done as follows

(assuming that you change the archive

file name to be relative to the input

file name):

#!/bin/bash

for FILE in $@; do

if [$? -eq 101]; then

lpr "$FILE"

cp "$FILE" ~/backup/"$FILE".bak

fi

done

When you’ve finished writing

the Nautilus scripts, ensure that

they are saved under the ~/.gnome2/

nautilus-scripts directory and that you

make the script executable.

Of course, if you don’t want to create

your own, a number of useful Nautilus

scripts can be downloaded from

http://g-scripts.sourceforge.net.

they are saved under the ~/.gnome2/

nautilus-scripts directory and that you

INTERACTIVE SHELL SCRIPTING CONTINUED

3

