
MASTERING LINUX

apcmag.com  mastering linux  part 101

MASTERING LINUX

  part 10 2

mastering the shell

Mastering Linux, part 10

By now, you should be familiar with many shell

commands. But it’s only when you get into shell

scripting that you can truly understand how these

commands can be tied together to easily and quickly

perform very complicated tasks. Shell scripting even

allows you to design your own commands and

macros — all on the command line.

However, there are a few other commands which

need to be discussed as they are invaluable for

creating scripts.

MORE THAN ECHOES TALK ALONG THE WALLS
The echo command simply takes what has been

supplied as an argument, and prints it to the

standard output (the next line of the shell).

When used by itself, the echo command almost

seems trivial. Why would you have the shell return a

string of text you’ve just given it? However, echo is

invaluable to a script writer, as it allows the script to

display information onscreen while it’s being

executed. For instance, it could be used to ask a

question of the user while an interactive script is run.

When using echo, it’s a good idea to encapsulate

the text that you want to appear in quotation marks.

This way, special characters such as asterisks and

question marks appear as intended and aren’t used

for other purposes such as pattern matching.

A CALCULATED EXPRESSION
1 There may be times when a script needs There may be times when a script needs

to perform a basic mathematical calculation.

For instance, use the following command to add

21 to 42:

expr 42 + 21

The expr command doesn’t support floating

point operations, so the numbers you work with

must be integers. The numbers and operands in

your command should always be separated with

a space, as each of these elements needs to be

treated as its own argument to the command.

Addition (+), subtraction (-), multiplication (*),

division (/) and modulus (%) operations are possible

with the command. When multiplying, be sure to

enclose the asterisk in quotation marks to prevent

pattern matching.

It can also be used to perform comparison

functions, but this is outside the scope of this article.

For more information, type man expr at the shell.

KNOWING YOUR HEAD FROM TAIL
2 Often, you’ll be required to parse the first or last Often, you’ll be required to parse the first or last

few lines of a file through a script in order to perform

a task. The head command returns data from the

beginning of a file, while tail returns data from the

end. To display the first five lines of a file, use:

head -5 filename.txt

To see the last 5 lines of the file, substitute the head

command for tail. If you leave out the numeric

switch, both commands will return a total of 10 lines.

The tail command has a few more switches than

head, -f (follow) is one of the most common. When

used alone, the last 10 lines of the specified file are

displayed, but you won’t be taken back to a

command prompt. The command continues to run

and displays any lines added to the file. This is handy

when processing a stream of data.

WHEN ALL IS SED AND DONE
3 The The sed (stream editor) command performs

single-pass transformation of streams of data which

is usually piped through to the command. It’s often

used to filter, substitute and/or insert data into

various parts of a stream of data.

For instance, imagine you need to list the

contents of a configuration file, but don’t want the

comment lines in the file to get in the way. In this

case, you could use the sed command as follows:

cat config.txt | sed '/^#/d'

To understand what this command does, break it

Skill level
Intermediate

Requirements

An installation of Linux
(Fedora Core 3 was used in
the writing of this article).

Time to complete
2 hours (approx)

Bonus DVD software

PDFs of every instalment of
the Mastering Linux series.


Expression in action: you’ll need to surround the
multiplication (*) symbol with quotes for it to work. And

remember, expr only works with integers.

1


Heads or tails: if you need to find out the contents of the beginning or end of a file, use the head
or tail command.2

In this month’s instalment of the Mastering Linux series,

Jarrod Spiga outlines some essential shell commands.

MASTERING LINUX

  part 101

MASTERING LINUX

apcmag.com  mastering linux  part 10 2

mastering the shell

down into parts. The portion before the pipe

lists the contents of the file in question — the

output is then passed on to the second half of

the command. The d tells sed to delete the

lines that match the prefixed filter.

The filter is the complicated part. All filter

expressions must be surrounded by a forward

slash (/). The caret (^) is a special character

used to match the beginning of a line. The

table below details what all of these special

characters are, and some common usages.

The hash (#) is used as the next character in

the filter because all comment lines in a

configuration file will start with one.

Special characters

^ Matches the beginning of a line.

$ Matches the end of a line.

. Matches any single character.

* Matches zero or more occurrences of the
previous character.

[] Matches any of the characters between
the brackets.

Frequently used combinations

/./ Matches all lines containing at least
one character.

/ .̂$/ Matches lines containing only one character.

/^#/ Matches all lines starting with a hash.

/^$/ Matches all blank lines.

/) *$/ Matches any line ending with a closed-
parenthesis followed by zero or more spaces.

/^[xyz]/ Matches any line beginning with a lower-case
x, y or z

SEARCH AND REPLACE
4 The example above is fine for deleting The example above is fine for deleting

entire lines of output, but what if you need to

remove a few words from any given line in a

file? The search and replace function of sed is

useful for this.

Imagine a text file containing a large

amount of data and a few confidential email

addresses. The following command could

remove those email addresses from the file:

cat document.txt | sed 's/[:blank:
][:graph:]*@[:graph:]*.[:graph:]*
[:blank:]/<confidential>/g'

Dissecting the sed command, the first

character to address is s (for substitute). What

appears between the first two forward slashes

is the search string — [:blank:] matches any

space or tab character, while [:graph:]

matches any visible character. The search

term looks for a space or tab, followed by zero

or more visible characters (the alias), the @

character, then zero or more characters (the

domain name, minus the top-level domain

suffix), then a period, then zero or more

characters (making up the suffix) and finally,

another space or tab. The string appearing

between the second and third forward slashes

is what is substituted in to the area matched

by the search string.

Lastly, the g (global) option replaces all

instances of the search string on all lines. If

you don’t use this option, only the first email

address on each line will be replaced, leaving

the rest visible.

Overall, sed is a very powerful command

line tool capable of much more than has

been demonstrated in this Workshop. A more

in-depth sed tutorial can be found at http://
www-106.ibm.com/developerworks/
linux/library/l-sed1.html. Of course, the sed

man page is also very useful, albeit brief.

SHELL VARIABLES
Variables are a fundamental part of most shell

scripts. In the same way as variables are used

in algebra, values can be assigned to shell

variables, each defined by a unique name.

There are two methods to using variables:

1. Declaring the variable is usually done by

assigning a value to a unique keyword using

the equals sign. For example, to abbreviate

the location of where the web root on your

system is located, you could define:

www=/var/www/html

2. Using variable substitution to access the

contents of a variable by preceding the

variable name with a dollar sign. Using the

example above, change the working directory

to your web root by entering:

cd $www

You can find out what the value of a variable is

at any time by echo-ing it to the shell:

echo $www

ENVIRONMENT VARIABLES
Another special class of variables exist on a

Linux system. Environment variables provide

the shell with instructions on how it should

behave under certain conditions. The most

frequently used environment variable is PATH.

PATH contains a list of directories that hold

executable commands or scripts. When you

enter a command into the shell, it first

searches the present working directory for the

command. If the directory can’t locate it, it

searches the locations defined in the PATH

variable in order until the command is found.

If the command isn’t found in any of the PATH

locations, an error message will appear.

Consider the echo command. It’s actually

located in the /bin/ directory on Fedora

systems. Because of the PATH variable, you

can run the echo command regardless of your

location in the directory tree. You can find out

what the PATH variable on your system

contains using the method described above:

echo $PATH

When viewing the PATH, note that the /home/

<user name>/bin directory appears in it. This

means the shell will look in the bin directory

inside your home directory when searching

for commands. This location is one of the best

places to store any shell scripts you create.

Editing the PATH variable is as simple as

re-declaring it. Remember to consider the

notation of the variable (use the output from

echo as a guide); the order of execution; and

to keep the existing locations in the PATH

available. You can refer to the PATH variable

while re-declaring it:

PATH="/home/<user name>/scripts:
$PATH"

USING QUOTES AND BRACES
5 One of the most common problems One of the most common problems

encountered when writing scripts results

from not using (or incorrectly using)

quotation marks. For instance:

NAME=APC Magazine

USING QUOTES AND BRACES

encountered when writing scripts results

from not using (or incorrectly using)

quotation marks. For instance:


Take it back: sed can be used to filter out sections of screen output. For instance, to remove Web server log entries sed can be used to filter out sections of screen output. For instance, to remove Web server log entries sed
relating to local addresses.3

MASTERING LINUX

apcmag.com  mastering linux  part 103

MASTERING LINUX

  part 10 4

mastering the shellmastering the shell

attempts to assign APC to the NAME variable,

and then execute the Magazine command

(which probably doesn’t exist on your Linux

system). To get a whole name assigned to the

variable, you need to surround it with single

or double quotation marks — that way, the

shell doesn’t treat what appears after the

space as an argument.

Double quotation marks should be used

when you need to group words together, but

still want some level of command and variable

substitution to occur. Single quotation marks

should be used to assign data to variables

literally. Consider the commands below:

LINE1="I read $NAME."

LINE2='I read $NAME.'

Because double quotation marks are on the

first line, variable substitution is used during

the assignment operation, and the value

assigned will be I read APC Magazine. A

literal assignment is used in LINE2, and its

value is "I read $NAME." The same principle

applies for command substitution.

It’s especially important to remember the

distinction between single and double

quotation marks. In most cases, use double

quotation marks to allow substitution. Single

quotation marks should be used when you’re

dealing with strings containing dollar signs.

Braces can also be used to reduce

ambiguity in scripts and are used by the shell

to discern exactly where a variable name

begins and finishes.

BRAND="Coca"

echo ${BRAND}Cola

Using the above example, the shell would

attempt to echo a variable named BRAND

-Cola if the braces weren’t included.

However, the braces inform the shell that the

variable that you’re using is a name brand,

and to append the -Cola string to the

variable in the output.

A BASIC SCRIPT
A shell script is a plaintext file that contains

commands that the shell executes in a

procedural fashion. Since they are plaintext,

they can be created by any text editor,

including vi or pico. The first line of your shell

scripts should contain the #! characters

followed by the path to the interpreter that is

used to execute the script. Since you’re using

pure shell commands, your shell scripts

should start with:

#!/bin/sh

You may have seen a similar line at the start of

Perl scripts, which informs the shell that the

Perl interpreter needs to be used to process

the script. The syntax used in those files is

different, but a syntax that Perl understands.

After you’ve defined the interpreter, you

can start entering the commands that make

up your script:

ORIGINAL="$1"

ARCHIVE= "$2"

lpr "$ORIGINAL"

cp "$ORIGINAL" ~/backup/mastering_
linux_"$ARCHIVE"

The "$1" and "$2" variables are substituted

for the first and second arguments to the

script automatically. The first two lines assign

these arguments to more user-friendly

variable names. The third line prints the

contents of the file parsed as the first

argument. The last line copies the file

specified as the first argument to a backup

location, and names it in accordance with the

second argument.

EXECUTION
Once you’ve finished writing the script, save it

(remember, keep your scripts in ~/bin) and

exit from your editor. You can now run the

script by entering:

sh ~/bin/<script name> <arg1>
<arg2>

where <script name> is the name of the file

that you saved your script as. This method of

running your script isn’t the most optimal. By

passing the script location to the shell

command, you’re not taking advantage of the

contents of the PATH variable.

To make it easier to run your script, use

chmod to change the permissions of the file so

that it’s execuatable:

chmod u+x ~/bin/<script name>

Once you’ve done this, you can run your script

from any location in the file system by calling

its name as a command. And since the script is

located in your home bin directory, the shell

will be able to find the script by using the

PATH variable.

Next month . . .

Part 11 of the Mastering Linux series will
cover conditional statements, control
structures and other script coding
methods. It will also briefly demonstrate
some techniques for customising your
X-Windows experience.


Search and replace:Search and replace: alternatively, alternatively, sedsed can be used to replace information to make things easier can be used to replace information to make things easier sed can be used to replace information to make things easier sedsed can be used to replace information to make things easier sed
to read.4 

Variable care: Variable care: the proper use of no, single or double quotation the proper use of no, single or double quotation
marks is imperative to creating useful scripts, as is the use of braces.5

