
School of Linux

86 LXF147 August 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Previous parts on the DVD

We’re coming towards the end of our LPI series of
tutorials, with the final instalment due next
month, so it’s time to look at a few advanced

topics that you might come across on your system
administrator travels.

We’re going to kick off with a look at processes, and how
you can manipulate them to your liking. There’s nothing
worse than an errant process deleting important files and
leaving you feeling helpless, so we’re going to look at
solutions to this problem. We’ll also look at filesystems, not in

The Mike Saunders

Part 7: Learn how to handle processes
like a pro, and get to grips with the
famously minimal Vi editor.

Imagine you’re sitting at home, and you fancy a nice cup of
tea. Being the industrious sort that you are, you call out to a
nearby family member to make one for you. Said family
member heads off to the kitchen, and as you look over the
back of your comfy armchair, you can see that he/she is
making a cup of coffee instead. Now, in this situation you’d
call out with a statement like “Gadzooks, I requested a fine
cup of tea please!” or something similar. But how does it work
in computing terms? What happens if you set a program
running, and you want to stop it or change the way it works?

At the most basic level, the equivalent to yelling “stop”
is pressing Ctrl+C. Try it with a command that generates
vast amounts of output, like ls -R / to list the root
directory and all subdirectories. As it spits out thousands of
lines to your terminal, you can hit Ctrl+C to stop it mid flow.
It’s finished; there’s nothing more that you can do. This is
mightily important when you realise you’ve just entered

something crazy, and you need to stop it before any
damage is done.

There’s an alternative to this, however. What if you want to
merely pause the program’s execution for later? Say, for
instance, you’ve just entered man gcc to read the manual
page for the GNU C Compiler. You’ve scrolled around and
found an interesting point in the documentation – so you
want to try out some things, without losing your position. Hit
Ctrl+Z, and the manual page viewer will disappear into the
background, putting you at the command prompt. You can do
your work and then type fg (for foreground) to bring the
manual page viewer to the front, exactly where you left it.

It’s possible to start a program in non-viewing mode
(suspended), so that you can switch to it when you’re
ready. This is done by appending an ampersand (&)
character, like this:
man df &

Last month Advanced tricks and techniques using the command line.

Section 1: Managing processes

terms of the contents as we covered that earlier, but in how to
format partitions as new filesystem types and perform
checks on them in case anything goes wrong.

Finally, we’ll explore the Vi editor that’s supplied with
almost every Linux and Unix installation under the sun, and
which is notoriously difficult to use at first but can be a
godsend when you’ve got the essentials sorted.

Next issue we’ll have a detailed set of LPI training
questions, so once you’ve finished this tutorial, you have a few
weeks to get revising. Good luck!

LXF147.tut_lpi 86 6/3/11 11:10:37 AM

School of Linux School of Linux

www.tuxradar.com August 2011 LXF147 87

Nice to see you, to see you, nice
By default, a process doesn’t have more rights
to resources than any other process on the
system. If process A and process B are started,
and they’re both taxing the CPU, the Linux
kernel scheduler will split time evenly between
them. However, this isn’t always desirable,
especially when you have many processes
running in the background. For instance, you
might have a cron job (periodic task) set up to
compress old archive files on a desktop
machine: if the user is doing something
important, you don’t want them to suddenly

lose 50% of their processing power whenever
that cron job comes up.

To combat this, there’s a system of priorities.
Each process has a nice value, which sets how
the OS should treat it, with 19 the lowest priority,
counting upwards to zero for the default, and
-20 for the top priority. For instance, if you want
to start a program with the lowest priority, use:
nice -n 19 programname

This will run the program, and if nothing else
is happening on the system, it should complete
in normal time. However, if the system gets

under load from other processes, it will deal with
them first. For nice values above zero, you have
to be root:
sudo nice -n -10 programname

This is for multi-user systems, where the
administrator wants to give his tasks priority
(otherwise everyone else would be giving their
processes maximum niceness!). You can
change a process’s nice value using the renice
command – see its manual page for more
information – and see the values in the
output of top.

Here, we start the manual page viewer for the df (show
disk free space) command, but in the background. We get a
line of feedback on the screen:
[1] 3192

The second number here is the process ID (we’ll come
onto that in a minute). You can now go about doing your work,
and when you’re ready to join up with the program you
started, just enter fg.

This system becomes especially useful when you combine
multiple programs. For instance, enter:
nano &
man df &

Here we’ve started two programs in the background. If we
enter jobs, we get a list of them, with numbers at the
beginning and their command lines. We can resume specific
programs using a number – for instance, fg 1 will switch to
the Nano editor, and fg 2 to the manual page viewer.

Let’s move on to processes. Ultimately, a process is an
instance of execution by a program: most simple programs
provide one process, which is the program itself. More
complicated suites of software, such as a desktop
environment, start many processes – file monitoring
daemons, window managers and so forth. This helps with
system maintenance (imagine if all of KDE was one gigantic,
fat executable where everything stopped if one component
crashed), and allows us to do some useful things as well.

To show a list of processes, enter ps. You’ll find the output
rather uninspiring, as it’s likely to be just a couple of lines
long; this is because it’s only showing processes being run by
the current user. To view all processes running on the
machine, enter ps ax. Typically, this will be very long, so you
can pipe it to the less viewer as described last month:
ps ax | less

Exactly what you see will depend on the specific makeup
of your Linux installation and currently running programs, but
here’s an example line:
2972 pts/0 Ss 0:00 bash

The 2972 here is the process ID (PID). Every process has a
unique ID, starting from 1, which is the /sbin/init program
that the kernel runs on boot. After that, the pts/0 bit shows
from which virtual terminal the command was run – if you
see a question mark here, it’s a process that was started
outside of a terminal, eg by the kernel or a boot script. The Ss
says that the process is sleeping (not doing any active
processing), then there’s a time indicator showing how much

 Here’s the
output of ps
ax, showing
all running
processes on the
system.

CPU time the process has consumed so far, followed by the
command line used to start the process.

An alternative way to get a list of processes, and one
which is by default sorted by CPU usage, is by entering top.
This is an interactive program that updates every few
seconds, showing the most CPU-intensive tasks at the top of
the list. It also provides headings (in the black bar) for the
columns, so you can determine a process’s PID, the user who
started it and so forth. Note that while there are various
columns for memory usage, the most important is RES
(resident), which shows exactly how much real memory the
process is currently using up. To exit top, press Q.

So, let’s say you are happily running a program, and
suddenly it goes haywire, gets stuck in a loop and is
occupying all the CPU. You can’t kill it with Ctrl+C – you
might’ve started it from your window manager’s menu. What
can you do? The first option is to find out its PID using the
previous methods, and then enter:
kill <pid>

Replace <pid> with the number. Although this command
is named after the act of murdering something, it’s actually
rather soft in its default state. On its own, kill sends a friendly
“Would you mind shutting down?” message to the process,
which the process can then deal with (eg, cleaning up
temporary files before shutting down). Sometimes this will

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Key combinations
to stop and pause
processes, such
as Ctrl+C and
Ctrl+Z, work in
most cases but not
always. It’s possible
for programs to
remap those keys
to provide other
functionality – or
to stop employees
from jumping out
of their important
programs to play
Nethack!

Quick
tip

LXF147.tut_lpi 87 6/3/11 11:10:38 AM

School of Linux

88 LXF147 August 2011 www.linuxformat.com

School of Linux

Never miss another issue Subscribe to the #1 source for Linux on page 66.

Testing filesystem integrity
Modern Linux filesystems, such as ext4 (the
default on most installations today), are robust
and reliable. They can’t perform miracles in the
event of a power outage, but they can try to
leave the filesystem in a reasonably consistent
state, so that you don’t lose all your data.
However, nothing is invincible and if you’ve had
a major problem with your hardware, you might
suspect that something is wrong with your disk.
Here’s how an administrator would sort it out.

First, enter dmesg and see if there’s anything
funny in the logs – anything that stands out to
do with data corruption, bad sectors and so
forth. If you see anything like that, pop a USB
thumb drive in the machine and copy all
important data immediately, because you never
know when the whole drive might fail. Next, Use
the df -h command to see how much free space

is on the drive; if it’s much smaller than you
expected, something might be wrong. Use du -h
in directories to see disk usage there.

The next step is to perform a filesystem
check. Reboot your distro into single-user mode
(the method for this varies between distros, but
usually involves editing the kernel line in the
boot loader, and adding S to the end.) When you
reach the command prompt, enter:
/sbin/fsck device-name

Change device-name for the device node for
your root hard drive partition – eg /dev/sda1.
You can also check other partitions too. fsck is
actually a front-end to various filesystem
checking tools, and on most Linux boxes runs
/sbin/e2fsck, which handles ext2/3/4
filesystems. During the checking process, if
problems are found, fsck will ask you what you

want to do. After checking, you can run /sbin/
dumpe2fs followed by the device node to get
more information about the partition, which
helps if you need to report a problem in an
online forum.

You may notice that many Linux distributions
automatically run fsck filesystem checks after
every 30 boots, or every 100 days, or a
combination. You can change how this works
with the tune2fs tool and its -c and -C options.
There are also settings for how the kernel
should treat a filesystem if it spots errors, and
many other features. It’s well worth reading the
manual page, especially the information about
the first five options. A similar utility, albeit
extremely technical, is debugfs – but you really
need to know the internals of filesystem design
to make good use of it.

 Entering top
shows a list of
processes sorted
by their CPU
usage.

Let’s move on to an advanced topic that, usually, you won’t
have to be concerned with as a system administrator:
filesystems and partitioning. At least, you won’t be dealing

with it on a day-to-day basis. In most cases, you’ll determine
the partition setup of a machine at installation time, and
that’ll be it for months or even years. Graphical tools like
GParted, used by many distro installers, make this process a
cinch, although it’s important to be aware of command line
tools for emergency situations.

First, a recap: a hard drive is usually divided into multiple
partitions. You might have a partition for Windows, for
instance, and then a partition for Linux. Most Linux
installations exist in two or more partitions: data partitions
(such as / and /home) and then the swap partition for virtual
memory. Data on these partitions has to be in some kind of
order, or format, and historically in Linux that was the ext2
filesystem format. Then came ext3 (with journaling), and now
we’re on ext4. Other partition types from the Linux and UNIX
world include XFS and ReiserFS. Most Windows machines
use NTFS, but external storage devices such as USB keys
tend to use FAT32 (also known as VFAT in Linux).

The most basic tool for partitioning from the command
line is fdisk. Provide it with the device node for your hard
drive, like this:

You can get a quick
overview of how
your system is
performing with the
uptime command.
This shows how
much time has
expired since the
last (re)boot, how
many users are
logged in, and the
load average for
recent periods of
time.

Quick
tip

Section 2: Creating new filesystems

stop a process, but if that process has its own kill signal
handler and is too messed up to deal with it, you’re stuck.
This is when kill starts to justify its name. Enter:
kill -9 <pid>

This doesn’t even bother asking the program if it’s OK – it
just stops it immediately. If the process is halfway through
writing a file, the results could be very messy, so this should
be used with extreme care, when no other option is available.

Sometimes you might have multiple processes with the
same name, or you just don’t want to look up its PID. In this
case, you can use the killall command. For instance, say
you’ve compiled some super bleeding-edge Apache module,
inserted it into Apache, and now your web server is going
haywire. You can’t stop Apache via its normal scripts, and

there are loads of processes called apache running. Try this:
killall -9 apache

Another useful signal which isn’t destructive but informs a
program to restart itself or re-read its configuration files is
SIGHUP, named after “hanging up” from dialup modem
devices. Many programs will ignore this, but it works well for
certain background daemons such as servers:
killall -HUP sendmail

This tells all sendmail processes running to slow down a
second, re-read the config files and then carry on. This is very
useful when you want to make a quick change to a config file,
and not take down the whole program. If, for some reason,
you don’t want this signal to be processed, use the nohup
tool to disable it – see man nohup for more information.

LXF147.tut_lpi 88 6/3/11 11:10:39 AM

School of Linux School of Linux

www.tuxradar.com August 2011 LXF147 89

To get an indication
of how much
memory is
available, enter
free -m. This
shows statistics
in megabytes. The
first line might
shock you, and
make you think
there’s hardly
any memory left,
even if you’re just
running Fluxbox.
But that includes
disk caches – so
the second line, -/+
buffers/cache, is
the one to look at.

Quick
tip

Next month The last few bits and pieces, and sample test questions galore!

 Helpfully Vim, unlike regular Vi, gives you some help text when you start it
without a filename.

Test yourself!
As you progress through this series of tutorials,
you may want to assess your knowledge along
the way. After all, if you go full-on for LPI
certification at the end, you’ll need to be able to
use your knowledge on the spot, without
consulting the guides. So, make sure you’ve
read, internalised and tried out everything in this

tutorial, and then see if you can answer the
questions below.
1 How would you run the command exim -q in

the background?
2 You have several programs running in the

background. How do you bring up a list of them?
3 How do you generate a list of all processes?

4 Exim has gone haywire, and you need to
completely terminate all instances of it. What’s
the command?
5 You’ve just created a new partition, /dev/
sda2, and you want to format it as FAT32. How?
6 Provide a way to start myprog with the

lowest priority.

1 – exim -q &. 2 – jobs. 3 – ps ax. 4 – killall -9 exim. 5 – /sbin/mkfs.vfat /dev/sda2. 6 – nice -n 19 myprog.

Section 3: A quick tour of the Vi editor
Finally this month, we’re going to take a brief look at Vi, the
“visual” editor. Yes, it might sound ridiculous that an editor is
described as “visual” – surely they all are? But back when Vi
was developed for Unix OSes in the 1970s, some people were
still using teletype machines.

The concept of a full-screen editor was rather novel, as
people were used to working on individual lines of a text file.
Still, Vi is very terse and basic, but because of its low
requirements, it’s installed by default on virtually every Unix
machine. In the Linux world, most distros include Vim (Vi
Improved), a much more advanced and capable version of
the editor.

Getting started
To start, run vi filename.txt. Before you press a key, note that
Vi operates in two modes: normal (for commands) and insert
(for editing text). This is in contrast to most other editors
where you just begin typing straight away.

In Vi, you have to press i to insert text at the current
location, which then lets you type what you want. When
you’re finished, press Esc to return to normal mode, ready for
commands.

There are many commands, and if you want to become a
Vi guru then there are plenty of books available. But some
essentials: in normal mode, entering dd deletes a line, yy
yanks (copies) a line to the clipboard, and p pastes that line
back out.

There are some operations which require that you enter a
colon first. For instance :w writes the file to disk, while :q quits
the editor. (If you’ve made edits and haven’t saved, and then
try to quit, Vi might complain – you can tell it to quit without

/sbin/fdisk /dev/sda
(Note that this has to be run as root, and if you’re not sure

which device node your hard drive is, look in the output of
dmesg.) Also note here that we’re just using /dev/sda, and
not /dev/sda1 – the latter is the number for a specific
partition, whereas we just want the whole disk. In most cases,
sda is the first hard drive, sdb is the second, and so on.

fdisk is a rather bare program; there are no menus or
wizards to automate things. Enter p to get a list of partitions
on your hard drive, and m to get help. There you’ll see which
commands delete partitions, create new partitions and so
forth. Any changes you make aren’t actually committed until
you enter w to write them to disk. Some distros include

cfdisk, a curses-based version of fdisk that makes things a bit
easier: there are simple menus and you move around with the
cursor keys.

After you’ve made a partition, you need to format it. This is
where the mkfs tools come into play. Type /sbin/mkfs and
then hit tab to show possible options – you’ll see there’s
mkfs.ext3 (for most Linux partitions), mkfs.vfat (for FAT32
partitions) and more. To format a partition, just provide its
device node:
/sbin/mkfs.ext3 /dev/sda2

For swap partitions, use the mkswap command. You can
then enable and deactivate swap space with the swapon and
swapoff commands.

saving using :q!. You can even combine actions, like writing
and saving with :wq.

Many people find Vi and Vim extremely uncomfortable to
work with, and yearn for modeless editors such as Emacs or
Nano. Others love its minimalism and hate the Ctrl key
obsession of those two other editors. It’s a war that’ll run on
and on, but regardless of the outcome, all good admins know
some basic Vi, as you can pretty much guarantee it’ll be on
every box you encounter. LXF

LXF147.tut_lpi 89 6/3/11 11:10:40 AM

