
School of Linux

84 LXF145 June 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Previous parts on the DVD

Some naysayers would have you believe that the
command line is a crusty old relic of the 1970s, a
pointless propellerhead playground which real human

beings don’t touch. But when it comes to the world of a
system administrator, nothing could be further from the truth.
The command line, aka shell, is more important than ever –
and for good reason:

 It’s always there. It exists underneath all the layers of GUI
goodness that we see on a typical desktop Linux installation,
so even if your window manager is playing up, you can hit
Ctrl+Alt+F2 to bring up a prompt and fix it.

 It doesn’t require graphics. You can log into a machine
remotely (using SSH) from the other side of the planet over a
dial-up connection, and you’ll be able to work just like it was
your local machine. No sluggish VNC or remote desktop
required. Similarly, on many machines, such as servers, you

The Mike Saunders

Part 5: After much delving around in
hardware, the filesystem and packages,
it’s time to fully master the command line.

If you’re running a graphical Linux installation, you can bring
up a command line prompt via your desktop menus – it’s
typically called Terminal, Shell, XTerm or Konsole. In this case
we’re using CentOS 5.5, where the command line is found
under Applications > Accessories > Terminal. When it’s
launched, we see this:
[mike@localhost ~]$

That’s the prompt, and there are four parts to it: first is
the username currently logged in, in this case mike. Then
there’s the hostname of the machine we’re using – localhost.
The tilde (~) character shows which directory we’re currently

working in; it could show bin if we were in /usr/bin for
instance. The user’s home directory is typically where a
terminal session starts its life, and the tilde is a shorthand way
of saying /home/mike here, so that’s why it appears.

Finally, we have the dollar sign, which is our prompt for
input. This indicates that we’re running as a regular user; if
you enter su to switch to the superuser (root) account, and
then your password, the dollar sign will change into a hash
mark (#) instead. Let’s try entering a command. Many exist
as standalone words. For instance, enter:
uname

Last month We got to grips with package management – RPMs and Debs.

Section 1: Getting orientated

won’t want all the fluff of a GUI installed. The command line is
all you need.

 It’s direct. It does exactly what you tell it to do. No “click
over on that red button kind-of near the top-left, then find the
menu that says Foo and check the box beside it” madness.
You just type in exactly what you want the computer to do,
and it does it. No messing around.

Consequently, all good administrators have a very solid
understanding of the command line, and if you’re heading for
LPI certification then you’ll need to grasp the concepts and
tools discovered here. If you’re new to Linux, it’s also a good
way to understand just how powerful and versatile the
command line is. We’ve used a few standalone commands in
previous instalments of this series, but now we’re going to
explore Bash – the default shell in 99.9% of Linux distros – in
more depth, so let’s get started!

LXF145.tut_lpi 84 4/6/11 12:22:32 PM

School of Linux School of Linux

www.tuxradar.com June 2011 LXF145 85

This outputs the name of the operating system, ‘Linux’.
However, uname has more features up its sleeve, and
these can be accessed using flags (also known as
parameters or switches).

These flags are usually specified with hyphens and letters
or words. For instance, try:
uname -a

This runs the uname program, but passes the -a flag to it
which means ‘show all information’ – so you get much more
verbose output. For most commands you can see which
options are available using the --help flag, eg uname --help.

So, now you know what you’re looking at in the prompt,
how to input a command, and how to change its
behaviour. That’s the essentials covered – let’s move on to
file management.

First up, enter ls – list files. This shows the files and
directories in the current directory, and depending on your
system, it might use colours to differentiate between items:
subdirectories could be blue, for instance.

The ls command on its own doesn’t show any hidden
items – that is, files and directories beginning with full stops.
Enter ls -a to see everything. (Hidden files are normally used
for configuration files that you don’t want cluttering up your
normal view.) For a detailed list, use ls -l. Note that you can
combine multiple flags, such as ls -l -a or even quicker, ls -la.
This shows much more information about the items,
including the owner, size, modification date and more.

So far we’re in our home directory, but you’ll want to move
around in your day-to-day life as an administrator. First of all,
let’s make a new directory:

 The ls
command for
listing files is
very flexible, and
can display items
in a variety of
ways, such as the
detailed list on
show here.

mkdir newdir
We can move into this using the cd (change directory)

command:
cd newdir

If you enter ls in here, you’ll see that there’s nothing inside.
To go back down into the previous directory, enter cd .. (cd
space dot dot).

If you’ve used DOS back in the day, you might recognise
this – .. always refers to the directory above the current one.
However, unlike DOS, you need the space in the command.
And it’s also worth noting that, unlike in DOS, all commands
and filenames are case-sensitive here.

So you can use cd with directories in the current one, but
you can also specify complete paths. For instance, you can
switch into the /usr/bin directory with:
cd /usr/bin

There’s another handy feature of the cd command, which
is this: enter cd on its own and you’ll switch back to your
home directory. This saves time when you have a particularly
long login name, so you no longer have to type something
huge like cd /home/bobthebob1234.

To display the full path of the directory you’re currently in,
enter pwd (short for ‘print working directory’). If you’ve just
changed directory, eg from /usr/bin to /etc, enter cd - (cd
space hyphen) to switch back to where you were before.

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

The $PATH to freedom

Man, I need help!

In true Linux fashion, this box has a
dependency: the main text of the article. Please
read it first so that you understand environment
variables! There’s a special variable called
$PATH which contains a list of locations from
which you can run programs. Enter echo $PATH
and you’ll see these directories, separated by
colons. For instance, there’s /usr/bin, /usr/sbin
and so forth (see LXF143’s LPI tutorial for a
description of filesystem locations). When you
enter a command, like nano to run the Nano

text editor, the shell searches in these locations
to find it.

However, it’s important to note that the
current directory isn’t part of the $PATH. This is
a security measure, to stop trojans (like a
malicious ls binary) ending up in your home
directory, and being executed each time you
type ls. If you need to run something from the
current directory, prefix it with dot-slash, eg ./
myprog. It might seem annoying, but this has
proven to be a great aspect of Linux and Unix

system security over the years. You might
have installed something in /opt which needs
to be added to your $PATH to function
correctly. To do this, use the export command
as described in the main text, but we don’t want
to wipe out the existing $PATH locations so we
do it like this:
export PATH=$PATH:/opt/newprog

Now, when you do echo $PATH you’ll see the
previous locations along with /opt/newprog
added to the end.

Want to learn more about the options available to a
particular command or program? Most commands have
associated documentation in the form of manual (‘man’)
pages. These aren’t friendly guides to using the program,
but quick references that you can bring up when you need
to check for a particular option. You can access these using
man followed by the name of the command in question; for
instance, man ls. In the viewer, use the cursor keys to scroll
up and down, and press Q to quit out. If you want to search
for a particular term, hit the forward slash (/) key and then
type what you’re looking for – for instance, /size to search
for the word ‘size’ in the man page.

LXF145.tut_lpi 85 4/6/11 12:22:33 PM

School of Linux

86 LXF145 June 2011 www.linuxformat.com

School of Linux

Never miss another issue Subscribe to the #1 source for Linux on page 66.

Creating and expanding archives
Software, patches and other bundles are
typically distributed as compressed files, and
there are a variety of formats in use. Fortunately,
most Linux distributions include the necessary
tools to explode and re-compress them, but
unfortunately, they don’t share the same flags.
It’s really a historical thing, and a bit annoying at
first, but in time you’ll remember. Here’s a quick
reference:

 .gz A single compressed file. Expand with
gunzip foo.gz. To compress a file, use gzip foo.

 .bz2 Like the above, but with stronger (and
slower) compression. Expand with bunzip2. To
compress a file, use bzip2. This format used to
be heavy going on older machines, but with
today’s PCs it’s the preferred choice for

distributing large source code archives such as
the Linux kernel.

 .tar A tape archive. Few people use tapes
today, but it’s a system of bundling multiple files
together into a single file (without compression).
Expand with tar xfv foo.tar. Join with tar cfv
foo.tar file1 file2 dir3 (that creates a new
archive called foo.tar with the files and/or
directories inside).

 .tar.gz / .tar.bz2 A combination of the
previous formats, and the most common way
for distributing source code. Files are
gathered together into a single lump with tar,
and then compressed with gzip or bzip2. To
extract: tar xfv filename.tar.gz or tar xfv
filename.tar.bz2. To compress: tar cfvz foo.tar.

gz file1 file2 (for .tar.gz) or tar cfvj foo.tar.bz2
file1 file2 (for .tar.bz2).

 .cpio A relatively rare format that bundles
files together into a single file (without
compression). Extract with cpio -id <filename.
Join with ls file1 file2 | cpio -ov > foo.cpio (that
character between file2 and cpio is a pipe –
more on that next month). You’ll come across
CPIO files if you work with initrd images.

Another useful utility is dd, which copies
data from one source to another. It’s particularly
useful for extracting disc images from physical
media. For instance, if you pop in a CD or DVD
and enter dd if=/dev/cdrom of=myfile.iso, you
end up with an ISO image (which you can then
redistribute or burn to another disc).

Section 2: Delving deeper

 Not sure what type a particular file is? Find out in an instant with the file
command, which pokes into the first few bytes to work it out.

Directory and filenames can be long, especially when they’re
strung together into paths, but Bash has a crafty feature: tab
completion. Type the first few letters of a file or directory
name, hit tab, and Bash will try to complete it. For instance,
type cd /usr/lo and then hit tab – it should expand to /usr/
local. If you have two or more directories in /usr beginning
with lo, Bash will show you which ones are available.

Tab-completion will save you hours of time in your Linux-
using life, as will command history. Using the up and down
cursor keys, you can navigate through previous commands
(these are stored in .bash_history in your home directory).
You can use the left and right cursor keys to move through
the command and edit it. If you enter history, you’ll see a list
of the most recent commands entered.

Let’s look at some more file manipulation commands. To
copy a file, use cp:
cp file1.txt file2.txt

You can copy multiple files into a directory with cp file1
file2 file3 dir. The command to move files works in a similar
way, and can be used to rename files: mv oldname
newname. To remove a file, use rm filename. A note of
caution though: rm doesn’t go deep into directories and
remove everything inside, including subdirectories. For that
you need the recursive switch:
rm -r directory

This removes the directory, all files inside it and all
subdirectories inside it too – a very powerful and destructive
command! (An alternative to this is the rmdir command.) If
you come across a file that you can’t identify, eg its filename
isn’t very descriptive or it doesn’t have a sensible extension,
you can use the ever-handy file command:
file /usr/bin/emacs

This excellent little tool probes the first few bytes of a file
to determine its type (if possible). For instance, if it spots a
JPEG header, it’ll tell you that it’s a JPEG file. The system file
uses is called ‘magic’, which is a database of bytes to look out
for in files which determine their types. Of course, this isn’t
always 100% accurate, and you might find a plain text file
identified as ‘Microsoft FoxPro Database’ or something crazy
like that, if it just so happens to have a certain sequence of
bytes inside.

In some cases you may want to update the timestamp of
a file, or create an empty file, and that’s where the touch
command comes in. Similarly, you’ll often want to locate files
at the command line, and there are two ways of doing this:
locate and find. They sound the same, but there’s a
fundamental difference: if you do locate foobar.txt, it will
consult a pre-made database of files on the system and tell
you where it is at light speed. This database is typically
updated every day by a scheduling program called Cron, so it
can be out-of-date.

For more to-the-second results, use find, for example:
find /home/mike -name hamster

This will perform a thorough search of /home/mike (and
all subdirectories) for any items with ‘hamster’ in the name.
But what if you want to search the current directory without

Want to run a
command, and
close the shell
session (eg
terminal window)
when it has
completed? Use
the exec command:
eg exec nano. On
leaving the Nano
text editor, the
window will close.

Quick
tip

LXF145.tut_lpi 86 4/6/11 12:22:33 PM

School of Linux School of Linux

www.tuxradar.com June 2011 LXF145 87

If you’ve entered
a command that
looks like it’s going
to take hours to
complete, and
want to stop it, hit
Ctrl+C. Beware
that it interrupts
the command
immediately, so
chances are it won’t
clean up any files it
was working on!

Accidentally
messed up the
display in your
terminal? You can
enter clear (or
press Ctrl+L) to
clear the screen.
If that doesn’t
work, and strange
characters are
appearing due
to the terminal
spewing out
random binary
data, try reset.

Quick
tip

Quick
tip

Next month Advanced command line techniques with pipes and redirects.

Section 3: Understanding the environment

 Environment variables alter the way that programs are
run – get a full list with the env command.

Test yourself!
Think you’ve internalised the topics and
commands we’ve described here? Want to see if
you’re ready to use this information in an LPI
setting or the real world? See if you can answer
these questions, and rotate the mag to see the
answers underneath:
1 What does the tilde (~) sign in a command

prompt mean?
2 How would you list all files in the current

directory, in detailed mode?
3 Which command to find files uses a pre-made

database?
4 How would you set the environment variable
$WM to icewm?

5 How would you add /opt/kde/bin to your
$PATH?
6 How would you make a .tar.bz2 archive of the

directory myfiles?
7 You want to run a version of Nano from your

current directory, not in your $PATH. How?

1 - Home directory. 2 - ls -la. 3 - locate. 4 - export WM=”icewm”. 5 - export
PATH=$PATH:/opt/kde/bin. 6 - tar cfvj archive.tar.bz2 myfiles. 7 - ./nano.

having to type its full path? Well, remember before we said
that .. is the directory above the current one? Well, . is the
current directory. So you could rewrite the previous
command, providing you’re already in /home/mike, as:
find . -name hamster

The find command can also be used for sizes: find . -size
+100k locates all files bigger than 100 kilobytes in the current
directory (use M for megabytes and G for gigabytes). Another
alternative is to find by type: find . -type f will only show files,
whereas -type d shows only directories. You can mix -name,
-size and -type options to create very specific searches.

Bash includes comprehensive wildcard functionality for
matching multiple filenames without having to specify them.

The asterisk character (*), for example, means ‘any
combination of letters, numbers or other characters’. So
consider this command:
ls *.jpg

This lists all files that end in .jpg, whether they’re
bunnyrabbit.jpg, 4357634.jpg or whatever. This is useful for
moving and deleting files: if you have a directory full of
images, and you want to get rid of those silly ones ending in
.bmp, you can do rm *.bmp. If you want a wildcard for just a
single letter, use a question mark:
mv picture?.jpg mypics

This command will move picture1.jpg, pictureA.jpg and
so forth into the mypics directory.

While typical use of the command line involves typing in
commands one-by-one, these commands are subject to the
environment in which they operate. There are environment
variables which store bits of information such as options and
settings, and programs can take the information from these
to determine how they operate. Environment variables are
usually in capital letters and begin with a dollar sign. For
instance, try this:
echo $BASH_VERSION

Here, echo is a command which simply outputs text to the
screen, in this case the contents of the $BASH_VERSION
environment variable. You’ll see a number such as 3.2.25.
Programs can probe this variable for their own purposes,
such as to determine whether or not a user is running version
3.0 or better and therefore with certain features available. To

see a full list of the environment variables in use, along with
their contents, enter env.

You can set up your own environment variables in
this way:
export FOO=”bar”
echo $FOO

(Note that there’s no dollar sign in the first command.)
This new $FOO variable will only last as long as the terminal
session is open; when you end it by closing the window,
typing exit or hitting Ctrl+D, it will be lost. To fix that, edit the
text file .bashrc in your home directory, which contains
variable definitions and other settings that are read when a
command line session starts. Save your changes, restart the
terminal and they will take effect.

Bash has other variables alongside those for the
environment in which programs run; it has its own variables
too. Enter the set command and you’ll see a full list of them. If
there’s a variable, either for Bash or the environment, that you
want to remove, you can do it as follows:
unset FOO

These features, combined with the tab completion,
wildcard expansion and history facilities, make the Linux
command line extremely efficient to work in and miles apart
from the clunky old DOS prompts of yore. As you get more
and more familiar with the command line, you’ll be tempted
to leave the file manager behind.

Above all, you feel totally in control. Typos aside, there’s no
way you can accidentally select the wrong option when
working at the command line: you are stating exactly what
you want to achieve. This is just half of the story though –
next we’ll look at tricks to send the output of one command to
another, or to a file for later viewing. Don’t miss it! LXF

LXF145.tut_lpi 87 4/6/11 12:22:34 PM

