
School of Linux

88 LXF143 April 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

Previous parts on the DVD

Guess how many files you end up with on your hard
drive after a single-CD Debian 6 installation. Go on –
we’ll wait. Well, the answer is 82,698. That seems

almost unbelievable – and impossible to manage – but
fortunately the Linux filesystem layout handles this vast
number of files well, providing everything with a sensible
place to live. You don’t need to know what each individual file
does in great detail, but from its location you can determine
its overall purpose in the grand scheme of things.

The Mike Saunders

Part 3: Moving on from hardware and the
boot process, our class now turns to the
filesystem layout, partitioning and shared
libraries. And yes, there’s a test at the end!

First, let’s look at how a Linux installation is organised on a
hard drive. As opposed to Windows, which has different
‘starting points’ or drive letters for each device, in Linux
there’s one single source of everything – like a Big Bang of
data. This is /, or the root directory, which is not to be
confused with the root user, aka administrator. All of the other
directories stem from this, such as /home/username, your
home directory. In other words, root is the top-level directory,
and everything on the system is a subdirectory of it. Here are
the items you’ll find in the root directory:

 /bin This holds binary files – that is, executable programs.
These are critical system tools and utilities, such as ls, df,
rm and so forth. Anything that’s needed to boot and fix the
system should be in here, whereas /usr/bin has a different
purpose – as we’ll see in a moment.
 /boot This contains the kernel image file (vmlinuz – the z
is because it’s compressed), which is the program loaded
and executed by the bootloader. It also contains a RAM disk

image (initrd), which provides the kernel with a minimal
filesystem and set of drivers to get the system running.
Many distros drop a file called config here – which contains
the settings used to build the kernel – and there’s a grub
subdirectory for bootloader configuration, too.
 /dev Device nodes. You can access most hardware devices
in Linux as if they were files, reading and writing bytes from
them. See part one of this series for more on /dev.
 /etc Primarily configuration files in plain text format,
although there are exceptions. Boot scripts (see part two of
this series) also live here. These are system-wide
configuration files for programs such as Apache; settings
for desktop apps typically live in a user’s home directory.
 /home Where home directories usually reside. Each user
account has a directory here for personal files and settings.
 initrd.img A symbolic link (not a real file, more like a
Windows shortcut) to the aforementioned RAM disk file in
/boot. You can see its full link target with ls -l.

Last month We shone the light of understanding onto the boot process.

Section 1: The Linux filesystem layout

This month, we’re looking at how the Linux filesystem fits
together, partitioning your hard drive and modifying the Grub
bootloader’s configuration. We’ll also look at how shared
libraries improve security and reduce disk space
requirements. As with the other tutorials in this series, some
filesystem locations and commands may vary depending on
the distro you’re using. However, for training purposes we
recommend one used in enterprise, such as Debian, which
this tutorial is based on. You can install it from your LXFDVD.

LXF143.tut_lpi 88 2/14/11 2:56:28 PM

School of Linux School of Linux

www.tuxradar.com April 2011 LXF143 89

 /lib Shared libraries; see the What are shared libraries? box
at the bottom of this page to learn more. Like /bin, these
are critical libraries used to boot and run the system at a
basic level. /lib also contains kernel modules (see part one
of this series for more).
 /lost+found If your PC crashes or loses power during a
heavy disk write operation and does a disk check (fsck) on
next boot, pieces of partially lost files are deposited here.
 /media When external drives, such as USB keys, are
plugged in, the auto-mounting process will give them a
directory here from which you can access the files.
 /mnt A bit like /media, except this is usually used for
manually mounted, long-term storage, including hard drives
and network shares.
 /opt Optional software. This is quite rarely used, but in
some distros and packages you’ll find large suites such as
KDE and OpenOffice.org placed here in order to keep
everything neatly together (and therefore easy to remove
or upgrade outside a package manager).
 /proc Access to process information. Each process
(running task) on the system can be examined here,
maintaining Unix’s ‘everything is a file’ philosophy.
 /root Personal files used by the superuser or root account.
Many administrators will keep backups of config files here
too. When it comes to multiple-user installations, it’s vital
that normal user accounts can’t poke around here.
 /sbin Binary executable files, similar to in /bin, but
explicitly for use by the superuser. This contains programs
that normal users shouldn’t run, such as network
configuration tools, partition formatting tools and so on.
 /selinux A placeholder for files used by the Security-
Enhanced Linux framework.
 /srv This is intended to be used for data served by the
system (for example, a web server). However, most
programs use /var instead.
 /sys Like a more modern /dev, with extra capabilities. You
can get lots of information about hardware and the kernel
here, but it’s not important for normal admin jobs.
 /tmp Temporary files. Any program can write here, so you’ll
see random bits and bobs from background services, web
browsers and so on. Most distros clean it at boot.

 Most programs
derive a good
chunk of their
functionality
from shared
libraries, as
running the ldd
command shows.

 /usr This is a different world. /usr contains its own versions
of the bin, sbin and lib directories, but these are for
applications that exist outside of the base system. Anything
that’s vital to get the machine running should be in /bin, /
sbin and /lib, whereas nonessential programs such as
Firefox and Emacs should live here. There’s a good reason
for this: you can have the important base system on one
partition (/) and add-on programs on another (/usr),
providing more flexibility. /usr, for example, might be
mounted over the network. In here, there’s also /usr/local,
which is typically used for programs you’ve compiled
yourself, keeping them away from the package manager.
 /var Here be files that vary. In other words, files that
change a lot, such as log files, databases and mail spools.
Most distros place Apache’s document root here too (/var/
www). On busy servers, where this directory is accessed
often with lots of write operations, it’s frequently given its
own partition with filesystem tweaks for fast performance.
 vmlinuz A symbolic link to the kernel image file in /boot.

Depending on your distro, you may find additional items in
the root directory. However, most distros try to abide by the
guidelines of the Filesystem Hierarchy Standard (FHS). This
is an attempt to standardise the filesystem layout across
distros. You can delve deeper into /var, /usr and other
directories by looking at the hierarchy manual page – just
enter man hier in a terminal.

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

What are shared libraries?
A library is a piece of code that doesn’t run on
its own, but can be used by other programs. For
instance, you might be writing an application
that needs to parse XML, but don’t want to
create a whole XML parser. Instead, you can use
libxml, the XML handling library, which someone
else has already written. There are hundreds of
libraries like this in a typical Linux installation,
including ones for basic C functions (libc) and
graphical interfaces (libgtk, libqt).

Libraries can be statically linked to a program
– rolled into the final executable – but usually
they’re provided as shared entities in /lib,
/usr/lib and /usr/local/lib with .so in the
filename, which stands for shared object. This
means multiple programs can share the same

library, so if a security hole is discovered in it,
only one fix is needed to cover all the apps that
use it. Shared libraries also mean program
binary sizes are smaller, saving disk space.

You can find out what libraries are used by a
program with ldd. For instance, ldd /usr/bin/
gedit shows a list of libraries including:
libgtk-x11-2.0.so.0 => /usr/lib/libgtk-x11-2.0.so.0
(0xb7476000)

Gedit depends on GTK, so it needs libgtk-x11,
and on the right you can see where the library’s
found on the system. What determines the
locations for libraries, though? The answer is in
/etc/ld.so.conf, which nowadays points to all
files in /etc/ld.so.conf.d. These files contain
plain text lines of locations in the filesystem

where libraries can be found, such as /usr/
local/lib. You can add new files with locations
here if you install libraries elsewhere, but must
run ldconfig (as root) afterwards to update a
cache that’s used by the program loader.

Sometimes you might want to run a program
that needs a library in a specific place that’s not
part of the usual locations. You can use the LD_
LIBRARY_PATH environment variable for this.
For instance, entering the following will run the
myprog executable that’s in the current
directory, and temporarily add mylibs to the list
of library locations as well:
LD_LIBRARY_PATH=/path/to/mylibs ./myprog.

Many games use this method to bundle libraries
alongside a binary, without needing the binaries.

LXF143.tut_lpi 89 2/14/11 2:56:28 PM

School of Linux

90 LXF143 April 2011 www.linuxformat.com

School of Linux

Never miss another issue Subscribe to the #1 source for Linux on page 66.

Test yourself!
As you progress through this series of tutorials,
you may want to assess your knowledge along
the way. After all, if you go for full-on LPI
certification when our time together is over,
you’ll need to be able to use your knowledge on
the spot without consulting the guides. We’re
planning to include a comprehensive set of
example questions when this series concludes,
but for now here are some tasks to try and

questions to answer based on the three sections
in these pages:
1 Where are the kernel image and RAM disk

files located?
2 Explain the difference between /lib, /usr/lib

and /usr/local/lib.
3 Explain the available Linux partitioning

schemes. Why would you put /home on a
separate partition?

4 Describe how to add a new location for
libraries on the system.

See if you can answer these without having to
turn back to the relevant sections. If you
struggle, no worries – just go back and read it
again. The best way to learn is to take the
information we’ve provided and experiment on
your machine (or a distro in VirtualBox if you
don’t want to risk breaking an installation).

Drive partitioning is one of those tasks that an administrator
rarely has to perform, but one that can have huge long-term
consequences. Allocate the wrong amount of space for a
particular partition and everything can get very messy later
on. How you go about partitioning depends on the installer
your distro uses, so we won’t list thousands of keybindings
here. Instead, we’ll look at a partitioning tool common to all
distros, and the options you have when divvying up a drive.

Open up a terminal, switch to root and enter:
fdisk /dev/sda

Replace sda with the device node for your drive. (This
should be sda on single-hard drive machines, or sdb if you’re
booting Linux from a second drive. Consult dmesg’s output if
you’re unsure.) fdisk itself is a simple command-driven
partitioning utility. Like Vi, it’s austere in appearance, but it’s
ubiquitous. Enter p and you’ll see a list of partitions on the
drive, as in the screenshot, below. Type m to list the available
commands: you can delete partitions (d), create new ones
(n), save changes to the drive (w) and so forth.

This is a powerful tool, but it assumes that you know what
you’re doing and won’t mollycoddle you. fdisk also doesn’t
format partitions – it just gives them a type number. To
format, type in mkfs and hit Tab to show the possible
completion options. You’ll see that there are commands to
format partitions in typical Linux formats (such as mkfs.
ext4) plus Windows FAT32 (mkfs.vfat) and more.

Along with filesystem partitions, there’s also the swap
partition to be aware of. This is used for virtual memory. In

Section 2: Partitioning schemes

 Most distros have their own graphical partitioning tools,
but wherever you are, you’ll always find the trusty fdisk.

other words, when a program can no longer fit in the RAM
chips because other apps are eating up memory, the kernel
can push that program out to the swap partition by writing
the memory as data there. When the program becomes
active again, it’s pulled off the disk and back into RAM. There’s
no magical formula for exactly how big a swap partition
should be, but most administrators recommend twice the
size of the RAM, but no bigger than 2GB. You can format a
partition as swap with mkswap followed by the device node
(/dev/sda5, for instance), and activate it with swapon plus
the node. You can also use a single file as swap space – see
the mkswap and swapon man pages for more information.

Partition approaches
Now, what approach do you take when partitioning a drive?
There are three general approaches:
1 All-in-one. This is a large single partition that contains the

OS files, home directory data, temporary files and server
data, plus everything else. This isn’t the most efficient route in
some cases, but it’s by far the easiest, and means that each
directory has equal right to space in the whole partition. Many
desktop-oriented distros take this approach by default.
2 Splitting root and home. A slightly more complex design,

this puts /home in its own partition, keeping it separate from
the root (/) partition. The big advantage here is that you can
upgrade, reinstall and change distros – completely wiping out
all the OS files if necessary – while the personal data and
settings in /home remain intact. For a more detailed look at
the benefits of creating a separate /home partition, turn to
our tutorial on page 80.
3 Partitions for all. If you’re working on a critical machine,

such as a live internet-facing server that needs to be up 24-7,
you can develop some very efficient partitioning schemes. For
instance, say your box has two hard drives: one that’s slow
and one that’s fast. If you’re running a busy mail server, you
can put the root directory on the slow drive, since it’s only
used for booting and the odd bit of loading. /var/spool,
however, could go on the faster drive, since it could see
hundreds of read and write operations every minute.

This flexibility in partitioning is a great strength of Linux
and Unix, and it just keeps getting more useful. Consider, for
example, the latest fast SSD drives: you could put /home on
a traditional hard drive to give yourself plenty of room at a
cheap price, but put the root directory onto an SSD so that
your system boots and runs programs at light speed.

Want to stop other
users from fiddling
around with options
at the Grub boot
screen? You can
password-protect
your boot entries
so that only you
can edit them –
see Grub’s online
documentation
at http://tinyurl.
com/6czhkn8 for
a guide.

Quick
tip

LXF143.tut_lpi 90 2/14/11 2:56:28 PM

School of Linux School of Linux

www.tuxradar.com April 2011 LXF143 91

Almost all Linux distributions today use
Grub 2 (the Grand Unified Bootloader to
give it its full name) to get the kernel
loaded and start the whole Linux boot
process. We looked at Grub in last issue’s
tutorial, and specifically how to edit its
options from inside Grub itself. However,
such edits are only temporary. If there’s a
change you need to do every time, it’d be
a pain to interrupt the boot sequence at
each startup. The solution is to edit the
/etc/default/grub file.

This isn’t actually Grub’s own
configuration file – that’s located at
/boot/grub/grub.cfg. However, that file
is automatically generated by scripts
after kernel updates, so it’s not
something you should ever have to
change by hand. In most cases, you’ll
want to add an option to the kernel boot
line, such as one to disable a piece of
hardware or boot in a certain mode. You
can add these by opening up /etc/
default/grub as root in a text editor,
and looking at this line:
GRUB_CMDLINE_LINUX_
DEFAULT=”quiet”

This contains the default options that are passed to the
Linux kernel. Add the options you need after quiet, separated
by spaces and inside the double-quotes. Once done, run:
/usr/sbin/update-grub

This will update /boot/grub/grub.cfg with the new options.

Old and grubby
If you’re using an older distro with Grub 1, the setup will be
slightly different. You’ll have a file called /boot/grub/menu.
lst, which will contain entries such as:
title Fedora Core (2.6.20-1.2952.fc6)
root (hd0,0)
kernel /vmlinuz-2.6.20-1.2952.fc6 ro root=/dev/md2 rhgb
quiet
initrd /initrd-2.6.20-1.2952.fc6.img

Here, you can add options directly to the end of the kernel
line, save and reboot for the options to take effect. Should

A mount point
is a place where
a partition is
attached to the
filesystem. Say,
for instance, that
the /dev/sdb2
partition on your
hard drive is going
to be used for the
home directories:
in this case, its
mount point will be
/home. Simple!

Quick
tip

Next month Package management explained in-depth – both RPM and Deb!

Section 3: Configuring the boot loader

 The place to add kernel boot options is /etc/default/grub – remember to run update-grub
afterwards in order to transfer your changes to /boot/grub/grub.cfg.

Grub get corrupted or removed by another bootloader, you
can reinstall it by running the following as root:
grub-install /dev/sda

Replace sda with sdb if you want to install it on your
second hard drive. This writes the initial part of Grub to the
first 512 bytes of your hard drive, which is also known as the
master boot record (MBR). Note that Grub doesn’t always
need to be installed on the MBR; it can be installed in the
superblock (first sector) of a partition, allowing a master
bootloader in the MBR to chain-load other bootloaders.
That’s beyond the scope of LPI 101, however, and you’re
unlikely to come across it, but it’s worth being aware of.

Finally, while Grub is used by the vast majority of distros,
there are still a few doing the rounds that use the older LILO –
the Linux Loader. Its configuration file is /etc/lilo.conf, and
after making any changes you should run /sbin/lilo to
update the settings stored in the boot sector. LXF

The magic of /etc/fstab
After reading about the partitioning schemes
available, and how to set them up using fdisk
and mkfs, you may be wondering how they
hook into a working Linux installation. The
controller of all this is /etc/fstab, a plain text
file that associates partitions with mount points.
Have a look inside and you’ll see various lines
that look like this:
UUID=cb300f2c-6baf-4d3e-85d2-9c965f6327a0 /
ext3 errors=remount-ro 0 1

This is split into five fields. The first is the
device, which you can specify in /dev/sda1-type
format or with a more modern UUID string (use
the blkid command with a device node to get its
UUID – it’s just a unique way of identifying a
device). Then there’s its mount point, which in
this case is the root directory. Following that is
the filesystem format, and then options.

Here, we’re saying that if errors are spotted
when the boot scripts mount the drive, it should

be remounted as read-only, so that write
operations can’t do more damage. Use the man
page for mount to see all the options available
for each filesystem format. The final numbers
deal with filesystem checks, and you don’t need
to change these defaults.

You can add your own mount points to /etc/
fstab with a text editor, but beware that some
distros make automatic changes to the file, so
be sure to keep an original copy backed up too.

LXF143.tut_lpi 91 2/14/11 2:56:29 PM

