
School of Linux

88 LXF141 February 2011 www.linuxformat.com

School of Linux

Mike
Saunders
has been writing
about Linux for
over a decade, and
has installed more
distros than he’s
had hot dinners.

Our
expert

How do you prove just how good your Linux knowledge
is? To your friends and family, it’s not so hard – set
someone up with a Linux box, let them see you doing

a few intricate operations at the command line and they’ll
soon be pretty convinced that you’ve got the nous. For
companies, however, it’s not so easy. They can’t necessarily
tell from a CV, covering letter or interview whether your brain
is swelling with useful information on package management,
the Linux boot process and so forth. That’s something that
has to be confirmed somewhere else.

Certified and bonafide
Fortunately, here in the Linux world we have an excellent
scheme to do just that: LPI Certification. LPI stands for the
Linux Professional Institute, a non-profit group that provides
exams and qualifications for those seeking to work with Linux
systems. There are three levels of certification available, the
first of which covers general system administration, including
configuring hardware, working at the command line, package
management and handling processes.

The Mike Saunders

Part 1: Looking to get a job in Linux?
Take a seat at the front of the class and
amass the information you need to get
LPI certified. This issue: hardware.

PCs are complicated beasts at the best of times, with designs
that desperately try to look and feel modern, but remnants
from the 1980s still lurking beneath the surface. Fortunately,
open systems such as Linux provide all the tools we need to
get lots of information about devices and peripherals. The
starting points for this are the /proc and /sys directories.
These are not real, ‘tangible’ folders in the same sense as your
home directory, but rather virtual directories created by the
kernel, which contains information about running processes
and hardware devices. What are they for? Well, /proc is
largely focused on supplying information about processes

(read: running programs on the system), whereas /sys
primarily covers hardware devices. However, there is a bit of
overlap between the two.

Sloppy lscpi
Most internal devices in your PC sit on a data transfer system
called the PCI bus. On older distros, you can obtain
information about devices using the command cat /proc/
pci, but this file doesn’t exist in newer distros. Instead, you
could look inside /sys/bus/pci/devices – although you
should be aware that this information isn’t meant to be read

Section 1: Listing hardware

In this series, we’re going to set you up with all you need to
know for the LPI 101 exam, thereby proving you have what it
takes to look after Linux boxes in a business setting. If you’ve
been using Linux for a while, you might find this installment
somewhat familiar, but it’s worth going through anyway in
case there’s a snippet of knowledge that you’re missing.

Live and learn
At this point, it’s also worth noting that LPI training materials
tend to be based around conservative, long-life distros that
don’t change drastically every six months. Red Hat Enterprise
Linux (RHEL) is a good example, but it’s not cheap, so
CentOS – a free rebuild of RHEL that’s bootable from your
LXFDVD – is an excellent base for your training. Another
good choice is Debian, which tries to adhere to standards and
remains stable for years at a time. Here, we’ll use CentOS 5.5.

So, without further ado, let’s get started! In this tutorial
we’ll be focusing on hardware, so we’ll walk you through the
process of finding out what devices are in your system,
enabling/disabling drivers and more.

LXF141.tut_lpi 88 12/13/10 3:46:14 PM

School of Linux School of Linux

www.tuxradar.com February 2011 LXF141 89

by us mere mortals. Instead, the command
we will use is:
/sbin/lspci

Open a terminal with Applications >
Accessories > Terminal and switch to the
root (admin) user by entering su. Then run
the command above and you’ll get a list of all
hardware devices on the PCI bus in your
machine, as shown in the image on the right.
You should be able to see your video card,
Ethernet adaptor and other devices. You can
generate much more detail by adding -vv
(dash v v) to the command, which will show
information about interrupts and I/O (input/
output) ports. If you’re new to the world of
PC hardware, then interrupts are effectively
ways for a device to tell the CPU that it needs
servicing – for instance, a soundcard telling
the system that it has completed an
operation. Meanwhile, I/O ports are for transmitting data to
and from the device.

A PC has a finite number of interrupts (aka IRQs). While
that was fine back in the days when most systems just had a
monitor and keyboard to their name, today it’s rather limiting.
Consequently, IRQs can be shared across devices. You won’t

What if you want to disable a device? Well, first of all we need
to identify what enables a device in the first place: the
hardware driver. In Linux, drivers can be enabled in two ways
when compiling the kernel. The distro maker can either
compile them directly into the kernel itself, or as standalone
module files that the kernel loads when necessary. The latter
approach is the norm, since it makes the kernel smaller,
speeds up booting and makes the OS much more flexible too.

You can find your modules in /lib/modules/<kernel
version>/kernel. These are KO files, and you’ll see that
they’re sorted into directories for sound, filesystems (fs) and
so on. If you go into the Drivers subdirectory, you’ll see more
categories of modules. It’s important to make a distinction
here between block and char (character) devices. The former
is for hardware where data is transmitted in large blocks, such
as hard drivers, whereas character devices stream data a
byte or so at a time – for instance, mice and serial ports.

The Linux kernel is clever, and can load modules when it
detects certain pieces of hardware. Indeed, it can load

A cold-pluggable
device needs to be
plugged in when
the machine is
off. Adding and
removing cold-
pluggable devices
(such as PS/2 mice
and keyboards)
when the machine
is on can potentially
damage chips on
the motherboard.

Quick
tip

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Section 2: Driver modules

 The output of
lspci, showing
the hardware
devices inside
the machine.

modules on demand when USB devices are plugged in – but
we’ll come to USB in a moment. In the meantime, let’s look at
how to manage modules. To get a list of all the modules that
the kernel has currently loaded, enter this command as root:
lsmod

Note that in some distros, such as CentOS, you may need
to prefix that with /sbin/ – ie /sbin/lsmod. You’ll see a list,
the exact contents of which will vary from system to system,
depending on the hardware that you have installed.

You know my name
Now, the names of some of these modules will be
immediately obvious to you, such as cdrom and battery. For
certain modules, you’ll see a list of Used By modules in the
right-hand column. These are like dependencies in the
package management world, and show which modules need
other ones to be loaded beforehand.

What about those modules with cryptic names, though?
What do they do exactly? Here’s where the modinfo

have to fiddle with the IRQs and I/O ports that a device needs
– those days are long gone, thankfully – but you can always
get a detailed list of hardware resources in use with the
aforementioned lspci -vv command. More options to lspci
are available, and you can find out more about these in the
manual page (man lspci).

What is /dev?
One of the core philosophies of Unix, and
therefore Linux, is that everything is a file. Not
just your documents and images, but hardware
too. That sounds strange at first – how can a
hardware device be represented as a file? Well, it
makes sense at a fundamental level. A file is
something which you can read information from
and write it to. The same’s true for a physical
device, such as a hard drive: you can read bytes
of data from it and write bytes of data to it.

However, there are some devices (such as
random number generators) that normally only
work one way – for instance, they can be read,
but you have no ability to send anything back.

The /dev directory contains hardware device
nodes – files representing the devices. For
example, /dev/dvd is your DVD-ROM drive. With
a disc in the drive, you could enter cat /dev/dvd
and it would spew out the binary data to your
terminal. Device nodes are created

automatically by the kernel, and some are
placed in subdirectories such as snd (sound
cards/chips), input (mice) and so on. There’s a
/dev/null device that simply eats data and
destroys it, which you can use when you want to
redirect output of a command so it doesn’t
show on the screen. There’s also /dev/mem, a
device for the machine’s RAM. Running strings
/dev/mem | less is a fascinating way to see
what text your RAM chips are currently holding.

LXF141.tut_lpi 89 12/13/10 3:46:15 PM

School of Linux

90 LXF141 February 2011 www.linuxformat.com

School of Linux

command comes into play. For instance, it isn’t at all clear
what the dm_mod module does, but by running:
/sbin/modinfo dm_mod

We get a bunch of information. This is largely technical, but
comes with a handy Description line that provides a smidgen
of information about what the module does. Unfortunately,
not every module has anything useful in this field, but it’s
worth trying if you’re stumped about one’s purpose.

As mentioned, many modules are loaded by the kernel
automatically. You can also force one to be loaded with the
modprobe command. This small utility is responsible for both
loading and removing modules from the kernel, and is a very
handy way to disable and enable kernel functionality on the
fly. For instance, in our module list we see that there’s lp,
parport and parport_pc. These are for printers hooked up to
the parallel port, which hardly anyone uses these days, so we
can disable this functionality to free up a bit of RAM with:
/sbin/modprobe -r lp parport_pc parport

How do we know the right order to enter these? We can
work it out using the Used By field mentioned before, placing
the module that the first two depend on at the end of the
command. So we remove the lp printer module, the parport_
pc PC-specific parallel port driver and finally the generic
parallel port driver.

Probe deeper
Similarly, we can enable these modules again by using a plain
modprobe command (without the -r remove flag). Because
of the dependencies system, we need only specify the first in
the list, and modprobe will work out what else it needs:
/sbin/modprobe lp

This also loads up parport_pc and parport, which we can
confirm with a quick lsmod command.

While Linux typically handles modules automatically and
with great aplomb, sometimes it’s useful to have a bit of
manual input in the process. We can do this via the /etc/

modprobe.conf file. First up is aliases, a way to provide a
shorthand term for a list of modules. For instance, you might
want to be able to disable and enable your soundcard
manually, but you can’t always remember the specific
module that it uses. You can add an alias line like this:
alias sound snd-ens1371

Now you can just enter modprobe sound and have your
card working without having to remember the specific driver.
Using this system, you can unify the commands you use
across different machines. Then there’s options, which
enables you to pass settings to a module to configure the way
it works. To find out which options are available for a
particular module, use the modinfo command as described
previously, looking for parm sections in the output.

For instance, when running modinfo snd-intel8x0 we can
see a list of parm sections that show options available for this
sound chip module. One is called index. Our CentOS on
VirtualBox /etc/modprobe.conf shows this in action with:
options snd-intel8x0 index=0

Custom commands
Lastly, we have the install and remove facilities. These are
really powerful: they enable you to replace commands with
different ones. For instance, in CentOS on VirtualBox we see:
remove snd-intel8x0 { /usr/bin/alsactl store 0...

The full line is much longer, but essentially it says: ‘When
the user or system runs modprobe -r snd-intel8x0, execute
this command instead, beginning with alsactl – a volume
control utility.’ In this way, you can perform clean up and
logging operations before the module removal takes place.

To prevent a module from loading entirely, simply alias it to
off in /etc/modprobe.conf:
alias parport off

This will stop the module from ever being loaded, and
therefore usually stop the hardware from being activated.

You can find out
more about LPI
certification at
the organisation’s
website: www.lpi.
org. There you can
find detailed lists of
objectives covered
in the various
qualifications and,
best of all, sample
exam questions.

Quick
tip

Never miss another issue Subscribe to the #1 source for Linux on page 102.

 An example
/etc/modprobe.
conf file in
CentOS 5.5.
Note the ability
to expand
upon remove
commands in the
last line.

 Listing driver modules with the lsmod command.

What are HAL, udev, D-Bus?
Desktop environments, such as Gnome and
KDE, are abstracted from the nitty-gritty of
hardware management. After all, Gnome
hackers working on a photo management app
don’t want to write code to poke bytes down a
USB cable to a camera – they want the OS to
handle it. This makes sense and enables Gnome

to run on other OSes. The HAL (hardware
abstraction layer) daemon once provided this
abstraction, but it’s been replaced by udev, a
background process that creates device nodes
in /dev and interfaces with hardware.

How do programs interact with udev? They
do this primarily via D-Bus, an inter-process

communication (IPC) system which helps
programs send messages to one another. For
instance, a desktop environment can ask D-Bus
to inform it if a new device is plugged in. D-Bus
gets this information from udev when the user
plugs in hardware and then informs the desktop
so that it can pop up a dialog or launch an app.

LXF141.tut_lpi 90 12/13/10 3:46:16 PM

School of Linux School of Linux

www.tuxradar.com February 2011 LXF141 91

If this article were written in the mid 1990s, we’d have to
include long sections on the various ports sitting around in
the back of a PC case. PS/2, AUX, serial, parallel… almost
every device required its own connector and things were
extremely messy. Thankfully, the situation is much simpler
today with USB (Universal Serial Bus) – virtually every
mainstream computer made in the last decade includes at
least one USB port. The specification hasn’t stayed still either:
we’ve had USB 2.0 and 3.0 ramping up speeds to compete
with other connectivity systems, such as FireWire.

When you plug in a USB device, the kernel initially probes
it to find out what class it belongs to. USB devices are
organised into these classes to facilitate driver development.
There are classes for audio devices, printers, webcams,
human interface devices (mice, keyboards, joysticks) and
more. There’s even a vendor-specific class for very
specialised devices that don’t fit into the normal categories
and therefore require specific drivers to be installed.

ls + usb = lsusb
Linux’s USB support is excellent, and there are many tools
available for administrators to find out what’s going on behind
the scenes. First of all, as the USB controller typically sits on
the USB bus, we can use our trusty lspci command to find
out information about what type of USB controller we have:
/sbin/lspci | grep -i usb

Here, we’re taking the output of lspci and piping it through
to the grep utility, to search for all instances of the word USB

Hardware-less booting
We’re all used to installing Linux on machines
that have the essential peripherals: a keyboard,
display and mouse. You can probably get away
with ditching the mouse if you’re familiar with
the right kind of tab-space-enter combinations
for your particular distro installer, but the other
devices seem obligatory. Or are they? In a server
environment, where your machine may be rack
mounted and hard to access, you might have to

install without hooking up these extra
peripherals – and that’s where network booting
comes into play.

The magic to this method is PXE, Preboot
Execution Environment. This is a bit of firmware
on the computer that scans the network for an
NBP (Network Bootstrap Program), which it
then loads and executes. For this to work you’ll
need functioning DHCP and TFTP servers on

your network, with the latter serving up the
appropriate boot files for the distro. If your
machine’s BIOS doesn’t support PXE, there’s
still another option – USB booting. You can boot
a rudimentary Linux system from a USB key,
which then goes on to load a more substantial
setup from the network. You’ll find a full tutorial
on our sister magazine PC Plus’s website at
http://tinyurl.com/linpxeboot.

Next month Understand the Linux boot process and runlevels.

 The verbose output from the lsusb -v command.

Section 3: USB peripherals

in upper or lower-case. Don’t worry if piping and grep are
unfamiliar: we’ll cover the command line in a later installment.
Currently all you need to know is that this command filters
the lspci output to just lines containing USB information.

After you’ve run the command, a few lines of information
should appear, telling you the vendor and type of USB
controller that you have. Slightly confusingly, there are two
standard controller types for USB 1: UHCI and OHCI. USB 2.0
created EHCI, which layers on top of one of those. You don’t
need to worry about the differences between them, since the
kernel handles this itself, but be aware that there’s a bit of
fragmentation in the USB world.

Like lspci, there’s a command we can use to list all devices
connected to our USB controller, and that’s:
/sbin/lsusb

On its own, this command doesn’t generate a great deal of
information – just a list of device numbers and their positions
on the USB bus. You can make it a bit more useful by adding
-t, which shows the devices in a tree-like format and helps
you see which are connected to which. However, by adding
the -v flag we get much more verbose information, as shown
in the screenshot on the left.

Look through the results and you can see information on
both the USB controller you have and the devices connected
to your box. If you’re feeling particularly adventurous, go into
/sys/bus/usb/devices, and there you’ll see directories for
each device, in which are files containing the manufacturer
name, speed, maximum power usage and more.

As covered before, kernel modules are usually the method
through which hardware devices are supported in Linux. This
is also true for USB. Try this command, for instance:
/sbin/lsmod | grep hci

On our machine, it shows that the kernel has loaded a
module for the OHCI controller, and also a module for EHCI
USB 2.0 support along with that.

Dmesg in a bottle
A good way to determine how the kernel is recognising as
USB device is with the dmesg command. This spits out a list
of messages generated by the kernel since bootup. Run
dmesg, then plug in a USB device, wait a few seconds for it to
be recognised, and run dmesg again, noting the differences.
Extra lines will be added to the bottom of the dmesg output,
showing that the kernel has (hopefully) recognised the device
and activated it. LXF

LXF141.tut_lpi 91 12/13/10 3:46:16 PM

